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ABSTRACT

In this paper, a differential equation with piecewise constant
arguments model that describes a population density of a bacteria
species in a microcosm is considered. The discretization process of a
differential equation with piecewise constant arguments gives us two
dimensional discrete dynamical system in the interval t ∈ [n, n + 1).
By using the center manifold theorem and the bifurcation theory,
it is shown that the discrete dynamical system undergoes flip and
Neimark–Sacker bifurcation. The bifurcation diagrams, phase portraits
and Lyapunov exponents are obtained for the discrete model.
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1. Introduction

The differential equation with piecewise constant arguments includes both discrete and
continuous time and so combines properties both differential and difference equation.
These equations have attracted great attention from the researchers in mathematics,
biology, engineering and other fields [1–19]. Nevertheless, these equations have limited
application in biology because the effect of piecewise constant arguments in a population
dynamics is not well understood. So it is clear that further studies are needed for the
application of differential equation with piecewise constant arguments in a population
dynamics. Theoretical studies have shown that differential equation with piecewise con-
stant arguments are equivalent to integral equations and are very close to delay differential
equations [1–3]. It is well known that delay differential equations occupy a place of central
importance in the population dynamics because the rate of populations may depends on
the present size and thememorized values of the population. These biological phenomenon
may be described by using differential equations with piecewise constant arguments.

The original method of investigation of these equations was based on the reduction to
discrete systems. Using this method, many authors have analyzed various types of differ-
ential equation with piecewise constant arguments [2,4–15]. The existence and uniqueness
of solutions, oscillations and stability, integral manifolds and periodic solutions, and
numerous other issues have been intensively discussed [16–19]. In several papers [2,4–15]
authors have investigated different types of population models based on logistic equations
with piecewise constant arguments and have obtainedmathematical results on oscillations
or chaotic behavior. In study [2,4], the simplest logistic equation with piecewise constant
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arguments
dx(t)
dt

= rx(t)(1 − x([t])
K

) (1)

has been considered as a semi-discretization of the delay logistic equation

dx(t)
dt

= rx(t)(1 − x(t − 1)
K

) (2)

where [t] denotes the integer part of t ∈ [0,∞). Gopalsamy and Liu [5], studied a more
general equation in the following form:

dx(t)
dt

= rx(t)(1 − ax(t) − bx([t])). (3)

They showed that all positive solutions of equation (3) converge to the positive equilibrium
points. The other studies about the equation (3) can be found in the studies [8–11].

Following these works, Gurcan and Bozkurt [12] studied the differential equation

dx(t)
dt

= rx(t)(1 − αx(t) − β0x([t]) − β1x([t − 1])) (4)

where the parameters r, α, β0 and β1 are positive numbers. They obtained some theoretical
results for the local and global dynamics of the equation. In addition equation (4) has some
application in a population dynamics [13].

In the literature, there are limited number of studies discussing the qualitative behavior
of the logistic equation with piecewise constant arguments, which include bifurcations and
chaos phenomena [6,7,20]. May [6] obtained that difference equation (1) can be complex
and exhibits chaotic dynamics for the parameter values of r. In study [7], the authors
showed that for certain parameter values of a and b, equation (3) generates Li-Yorke
chaos.

The purpose of this paper is to investigate possible bifurcation type of model (4) such
us Flip and Neimark–sacker bifurcation using center manifold and bifurcation theory.

This paper is organized as follows: In Section 2, we first give the local stability con-
ditions of positive equilibrium point of the equation (4). In Section 3, we investigate
possible bifurcation type of model (4) and show that the model enters flip bifurcation and
Neimark–Sacker bifurcation. By using center manifold theorem and bifurcation theorem,
we obtain the direction and stability of the both Flip and Neimark–Sacker bifurcation.
Theoretical results are verified by numerical simulations for two examples which included
phase portrait, bifurcation diagrams, Lyapunov exponents. Finally, Section 4 draws the
conclusion.

2. Local stability analysis

The discretization of the equation (4) in the interval t ∈ [n, n + 1) can be obtained as the
following difference Equation [12,13]:

x(n + 1) = x(n)(1 − β0x(n) − β1x(n − 1))
(1 − αx(n) − β0x(n) − β1x(n − 1))e−r(1−β0x(n)−β1x(n−1)) + αx(n)

. (5)
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If we introduce u1(n) = x(n) and u2(n) = x(n − 1), Equation (5) can be rewritten as{
u1(n + 1) = u1(n)(1−β0u1(n)−β1u2(n))

(1−αu1(n)−β0u1(n)−β1u2(n))e−r(1−β0u1(n)−β1u2(n))+αu1(n)
,

u2(n + 1) = u1(n).
(6)

Now the discrete dynamical system (6) reveals the dynamical characteristics of the system
of differential equationswith piecewise constant arguments (4). Therefore,wewill continue
to analyze the system of (6) instead of Equation (4).

The positive equilibrium point of system (6) is

(u1, u2) =
(

1
α + β0 + β1

,
1

α + β0 + β1

)
. (7)

Let u(n + 1) = Ju(n) is linearized system of (6) about (u1, u2). So, the Jacobian matrix J
can be calculated as

A(r) = J(u1, u2) =
((

1 + β0
α

)
e

−rα
α+β0+β1 − β0

α
β1
α

(
e

−rα
α+β0+β1 − 1

)
1 0

)
(8)

which gives the characteristic equation

p(λ) = λ2 + λ

(
−
(
1 + β0

α

)
e

−rα
α+β0+β1 + β0

α

)
−
(

β1

α
e

−rα
α+β0+β1 − β1

α

)
= 0. (9)

Using the characteristic Equation (9), the local stability conditions of the system (6) can
be obtained as the following theorem.

Theorem 2.1 [12,13]: Let β0 > α + β1 > 2α. The following statements are true.

(a) Assume that 3β1 < α + β0. The positive equilibrium point of system (6) is local
asymptotically stable if and only if

0 < r <
α + β0 + β1

α
ln
(

α + β0 − β1

β0 − α − β1

)
. (10)

(b) Assume that 3β1 > α + β0. The positive equilibrium point of system (6) is local
asymptotically stable if and only if

0 < r <
α + β0 + β1

α
ln
(

β1

β1 − α

)
. (11)

Example 2.2: The parameter values r = 2.3, α = 0.4, β0 = 1.2 and β1 = 0.1 satisfy
the condition of Theorem (2.1)a. Using these parameters values and the initial conditions
u1(1) = 0.4, u2(1) = 0.45, we hold Figure 1 which shows that the positive equilibrium
point (u1, u2) = (0.588235, 0.588235) is local asymptotically stable.

3. Bifurcation analysis

In this section, we first investigate the existence of possible bifurcation type for the system
(6). Stationary bifurcation does not exist for the system (6) because we always hold p(1) =
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Figure 1. A stable equilibrium point for the system (6).

(1 + β0
α

+ β1
α

)(1 − e
−rα

α+β0+β1 ) �= 0 [21]. The other bifurcations such as Flip and Neimark–
Sacker bifurcation are studied in the following section.

3.1. Flip bifurcation

To study Flip bifurcation, the parameter r is chosen as a bifurcation parameter. By using
the bifurcation theory in [21,23–35], we will investigate the conditions and direction of
Flip bifurcation.

Theorem 3.1 [21,22]: For the system (6), one of the eigenvalues is −1 and the other
eigenvalue lie inside the unit circle if and only if

(a) p(1) = 1 + p1 + p0 > 0,
(b) p( − 1) = 1 − p1 + p0 = 0,
(c) D+

1 = 1 + p0 > 0,
(d) D−

1 = 1 − p0 > 0.

Lemma 3.2 (Eigenvalue Assignment): Let β0 > α + β1 > 2α and 3β1 < α + β0.If

r1 = α + β0 + β1

α
ln
(

α + β0 − β1

β0 − α − β1

)
,

then the eigenvalue assignment condition of Flip bifurcation in Theorem (3.1) holds.

Proof: By considering the characteristic Equation (9), we obtain

p1 = −
(
1 + β0

α

)
e

−rα
α+β0+β1 + β0

α
, (12)

p0 = β1

α

(
1 − e

−rα
α+β0+β1

)
. (13)
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The condition (a) Theorem (3.1) gives the inequality

p(1) =
(
1 + β0

α
+ β1

α

)(
1 − e

−rα
α+β0+β1

)
> 0 (14)

which always hold. Considering the condition (b) with the fact β0 > α + β1, we have

p( − 1) = α − β0 + β1

α
+
(

α + β0 − β1

α

)
e

−rα
α+β0+β1 = 0 (15)

which gives

r1 = α + β0 + β1

α
ln
(

α + β0 − β1

β0 − α − β1

)
.

From (c), we get that the inequality

D+
1 = 1 + β1

α
(1 − e

−rα
α+β0+β1 ) > 0 (16)

is always satisfied. Computing the condition (d) with the fact β1 > α, we have

D−
1 = α − β1

α
+ β1

α
e

−rα
α+β0+β1 > 0 (17)

which leads to

0 < r <
α + β0 + β1

α
ln
(

β1

β1 − α

)
.

Under the condition 3β1 < α + β0, we have

r1 = α + β0 + β1

α
ln
(

α + β0 − β1

β0 − α − β1

)
<

α + β0 + β1

α
ln
(

β1

β1 − α

)
. (18)

This completes the proof.

Now, it is easy to check that the Jacobian matrix J has the eigenvalues

λ1(r1) = −1 and λ2(r1) = 2β1

−α − β0 + β1

which shows the correctness Lemma (3.2). We note that the condition 3β1 < α + β0 given
in Lemma (3.2) leads to |λ2(r1)| �= 1 and under the conditions of Lemma (3.2), it holds
that |λ2(r1)| < 1.

To compute the coefficients of normal form, we convert the origin of the coordinates
to equilibrium point (u1, u2) = ( 1

α+β0+β1
, 1

α+β0+β1
) by the change of variables

{
u1 = u1 + x1,
u2 = u2 + x2,

(19)
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This transforms system (6) into

⎧⎪⎪⎨
⎪⎪⎩
x1(n + 1) =

(
x1(n)+ 1

α+β0+β1

)(
−β0x1(n)−β1x2(n)+ α

α+β0+β1

)

−e
r
(

β0x1(n)+β1x2(n)− α
α+β0+β1

)(
x1(n)(α+β0)+β1x2(n))+α(x1(n)+ 1

α+β0+β1

) ,

x2(n + 1) = x1(n) + 1
α+β0+β1

,

(20)

This system can be rewritten in the form

Xn+1 = Fi(Xn, r), i = 1, 2. (21)

For map (20), we have

Xn+1 = JXn + 1
2
B(Xn,Xn) + 1

6
C(Xn,Xn,Xn) + O(X4

n), (22)

where

J = A(r1) =
(

−α+β0+β1
α+β0−β1

− 2β1
α+β0−β1

1 0

)
(23)

and the multilinear functions B and C are defined by

Bi(x, y) =
2∑

j,k=1

∂2Fi(ε, 0)
∂εj∂εk

|ε=0xjyk, i = 1, 2

and

Ci(x, y, z) =
2∑

j,k,l=1

∂3Fi(ε, 0)
∂εj∂εk∂εl

|ε=0xjykzl , i = 1, 2.

For the system (20), the values of B and C can be obtained as

B(ε, η) =
(

δ1ε1η1 + δ2ε1η2 + δ3ε2η1 + δ4ε2η2
0

)
, (24)

and

C(ε, η, ζ )

=
(
ε1η1(ϕ1ζ1 + ϕ2ζ2) + ε1η2(ϕ3ζ1 + ϕ4ζ2) + ε2η1(ϕ5ζ1 + ϕ6ζ2) + ε2η2(ϕ7ζ1 + ϕ8ζ2)

0

)
.

(25)
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where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ1 = 2e
−2rα

α+β0+β1 (α+β0)
α2 ((α + β0)(α + β0 + β1)

−e
rα

α+β0+β1 (β2
0 + α(α + β1) + β0(2α − rα + β1))),

δ2 = δ3 =
e

−2rα
α+β0+β1 β1

α2 (2(α + β0)(α + β0 + β1) + e
rα

α+β0+β1

(( − 2 + r)α2 + 2β0( − 2α + rα − β0) − 2β1(α + β0))),

δ4 = 2e
−2rα

α+β0+β1 β2
1

α2 (α + β0 + β1 − e
rα

α+β0+β1 (α − rα + β0 + β1)).

(26)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1 = 3
α3 e

−3rα
α+β0+β1 (α + β0)(2(α + β0)

2(α + β0 + β1)
2

− 2e
rα

α+β0+β1 (α + β0)(α + β0 + β1)(β
2
0 + 2α(α + β1) + β0((3 − 2r)α + β1))

+ e
2rα

α+β0+β1 α( − 2( − 1 + r)β3
0 − 2β0(( − 3 + r)α − β1)(α + β1) + 2α(α + β1)

2

+ β2
0 ((6 + ( − 4 + r)r)α − 2( − 2 + r)β1))),

ϕ2 = ϕ3 = ϕ5

= β1
α3 e

−3rα
α+β0+β1 (2e

rα
α+β0+β1 (α + β0)( − 3β2

0 + α(( − 5 + 2r)α − 5β1)

+ β0( − 8α + 6rα − 3β1))(α + β0 + β1) + 6(α + β0)
2(α + β0 + β1)

2

+ e
2rα

α+β0+β1 α( − 2( − 2 + r)α3

+ β0(2( − 3 + r)( − 2 + r)α2 + (12 + r( − 14 + 3r))αβ0 + (4 − 6r)β2
0 )

− 2(α + β0)(( − 4 + r)α + ( − 4 + 3r)β0)β1 + 4(α + β0)β
2
1 )),

ϕ4 = ϕ6 = ϕ7

= β2
1

α3 e
−3rα

α+β0+β1 (6(α + β0)(α + β0 + β1)
2

− 2e
rα

α+β0+β1 (α + β0 + β1)(3β2
0 + 4α(α − rα + β1) + β0((7 − 6r)α + 3β1))

+ e
2rα

α+β0+β1 α((2 + ( − 4 + r)r)α2 + (2 − 6r)β2
0 + 2β1( − 2( − 1 + r)α + β1)

+ β0((4 + r( − 10 + 3r))α + (4 − 6r)β1))),

ϕ8 = 3β3
1

α3 e
−3rα

α+β0+β1 (e
2rα

α+β0+β1 rα(( − 2 + r)α − 2β0 − 2β1)

+ 2e
rα

α+β0+β1 (( − 1 + 2r)α − β0 − β1)(α + β0 + β1) + 2(α + β0 + β1)
2).

(27)

It iswell know thatAhas simple eigenvalueλ1(r1) = −1, and the corresponding eigenspace
Ec is one dimensional and spanned by an eigenvector q ∈ R2 such that A(r1)q = −q. Let
p ∈ R2 be the adjoint eigenvector, that is, AT(r1)p = −p. By direct calculation we obtain

q ∼ ( − 1, 1)T ,

p ∼
(

α + β0 − β1

2β1
, 1
)T

.
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To obtain the necessary normalization 〈p, q〉 = 1, we can choose

q = ( − 1, 1)T ,

p =
(

− α + β0 − β1

α + β0 − 3β1
,− 2β1

α + β0 − 3β1

)T
.

In order to determine the direction of the flip bifurcation, we compute the critical normal
form coefficient c(0) by using the following formula:

c(0) = 1
6
〈p,C(q, q, q)〉 − 1

2
〈p,B(q, (A − I)−1B(q, q))〉. (28)

From the above analysis and Section 5.4 in [25], Section 3 in [31,32], we have following
theorem.
Theorem 3.3: Suppose that (u1, u2) is the positive equilibrium point of the system (6).
If the Lemma (3.2) holds and c(0) �= 0, then system (6) undergoes a flip bifurcation at
the equilibrium point (u1, u2) when the parameter r varies in a small neighborhood of r1.
Moreover if c(0) > 0 (respectively, c(0) < 0), then the period-2 orbits that bifurcate from
(u1, u2) are stable (respectively, unstable).

Now, we present the bifurcation diagrams, phase portraits and maximum Lyapunov
exponents for the system to confirm the above theoretical analysis and show the complex
dynamical behaviors by using numerical simulations.
Example 3.4: For the parameters values α = 0.4, β0 = 1.2 and β1 = 0.1, the critical
value of Flip bifurcation point is obtained as r1 = 3.2391. Now, the Jacobian matrix
corresponding to the system (20) is

J = A(r1) =
(−1.13333 −0.13333

1 0

)
(29)

Using the formulas (26) and (27), the values of δi and ϕi in the multilinear functions B and
C can be obtained as ⎧⎪⎨

⎪⎩
δ1 = 0.971598,
δ2 = δ3 = 0.211883,
δ4 = 0.02269.

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ1 = 5.02537,
ϕ2 = ϕ3 = ϕ5 = −0.0864671,
ϕ4 = ϕ6 = ϕ7 = −0.0181984,
ϕ8 = −0.00117201.

Now the eigenvectors q, p ∈ R2 corresponding to λ1(r1) = −1 are

q ∼ ( − 0.707107, 0.707107)T



JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 9

Figure 2. Bifurcation diagram of system (6) in (r, u1) plane for α = 0.4, β0 = 1.2, β1 = 0.1.

Figure 3.Maximum Lyapunov exponents corresponding to Figure 2.

and

p ∼ ( − 0.991228,−0.13216)T .

To achieve the necessary normalization 〈p, q〉 = 1, we can obtain

q = ( − 0.707107, 0.707107)T ,
p = ( − 1.63178,−0.217565)T .

Finally, using the formula (28), the critical normal form coefficient c(0) is computed as
c(0) = 0.736539. Therefore, a unique and stable period-two cycle bifurcates from (u1, u2)
for r > r1 = 3.2391.
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Figure 4. Bifurcation diagram of system (6) in (r, u1) plane for α = 0.4, β0 = 1.2, β1 = 1.2.

From Figure 2, we observe that the positive equilibrium point (u1, u2) of the system (6)
is stable for r < 3.2391 which shows the correctness of our theoretical results. The Flip
bifurcation occurs from the fixed point (0.588235, 0.588235) at r1 = 3.2391. In addition,
at r = r1, we have c(0) = 0.736539, which determines the direction of the Flip bifurcation.
It is well known that existence or non-existence of chaotic solutions for a dynamical
system is determined by calculating Lyapunov exponent. If the system has a positive
largest Lyapunov exponent, then the system exhibits chaotic dynamics. For the system
(6), the maximum Lyapunov exponents corresponding Figure 2 are calculated and plotted
in Figure 3 [36]. This figure demonstrates the existence of the chaotic regions and period
orbits in the parametric space . FromFigure 3, it is observed that some Lyapunov exponents
are bigger than 0, some are smaller than 0, so there exist stable fixed points or stable period
windows in the chaotic region.

Now, we discuss the Neimark–Sacker bifurcation for the model (6) in the following
section.

3.2. Neimark–Sacker bifurcation

Theorem 3.5 [21]: A pair of complex conjugate roots of (6) lie on the unit circle if and only
if

(a) p(1) = 1 + p1 + p0 > 0,
(b) p( − 1) = 1 − p1 + p0 > 0,
(c) D+

1 = 1 + p0 > 0,
(d) D−

1 = 1 − p0 = 0.
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Figure 5. Phase portraits for values of r for the parameters values α = 0.4, β0 = 1.2, β1 = 1.2 where
r = 2.75 (a), r = 2.83826 (b), r = 2.88 (c), r = 2.92 (d), r = 2.96 (e), r = 2.97 (f), r = 3.03 (g), r = 3.23
(h), r = 3.73 (l), r = 3.93 (m), r = 4.03 (n), 4.33 (o).

Figure 6.Maximum Lyapunov exponents corresponding to Figure 4.
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Lemma 3.6 (Eigenvalue Assignment): Let β0 > α + β1 > 2α and 3β1 > α + β0. If

r2 = α + β0 + β1

α
ln
(

β1

β1 − α

)
,

then the eigenvalue assignment condition of Neimark–Sacker bifurcation in Theorem (3.5)
holds.

Proof: The proof is similar as in Lemma (3.2) and will be omitted.

It is easy to see that the Jacobian matrix J has the eigenvalues

λ1,2(r) = e−
rα

α+β0+β1

2α
(α + β0 − e

rα
α+β0+β1 β0)

± i
e−

rα
α+β0+β1

2α

√
4e

rα
α+β0+β1 α( − β1 + e

rα
α+β0+β1 β1) − ( − α − β0 + e

rα
α+β0+β1 β0)2

and for r = r2, these eigenvalues become

|λ1,2(r2)| = |−α − β0 + β1

2β1
± i

√
4β2

1 − (α + β0 − β1)2

2β1
| = 1.

Under the condition β1 > α given in Lemma (3.6), we have

d|λi(r)|
dr

|r=r2 = −α + β1

2(α + β0 + β1)
�= 0, i = 1, 2

In addition if trJ(r2) = −p1 �= 0,−1, which leads to

r2 �= α + β0 + β1

α
ln
(

α + β0

β0

)
, r2 �= α + β0 + β1

α
ln
(

α + β0

β0 − α

)
,

then we have
λki (r2) �= 1 for k = 1, 2, 3, 4.

Let q ∈ C2 be an eigenvector of A(r2) corresponding to the eigenvalue λ1(r2) such
that A(r2)q = eiθ0q, and let p ∈ C2 be an eigenvector of the transposed matrix AT(r2)
corresponding to its eigenvalue λ1(r2) such that AT(r2)p = e−iθ0p. By direct calculation,
we have

q ∼
⎛
⎝−α − β0 + β1

2β1
+ i

√
4β2

1 − (α + β0 − β1)2

2β1
, 1

⎞
⎠

T

and

p ∼
⎛
⎝α + β0 − β1

2β1
+ i

√
4β2

1 − (α + β0 − β1)2

2β1
, 1

⎞
⎠

T

.
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To obtain the normalization 〈p, q〉 = 1, we can take

q =
⎛
⎝−α − β0 + β1

2β1
+ i

√
4β2

1 − (α + β0 − β1)2

2β1
, 1

⎞
⎠

T

and

p =
(
i

β1√−(α + β0 − 3β1)(α + β0 + β1)
,
1
2

+ i
α + β0 − β1

2
√−(α + β0 − 3β1)(α + β0 + β1)

)T
.

Now we form
x = zq + zq.

In this way, system (20) can be transformed for sufficiently small |r| into following form:

z 	→ λ1(r)z + g(z, z, r),

where λ1(r) can be written as λ1(r) = (1 + ϕ(r))eiθ(r) (where ϕ(r) is a smooth function
with ϕ(r2) = 0) and g is a complex-valued smooth function. The Taylor expression of g
with respect to (z, z) = (0, 0) is

g(z, z, r) =
∑
k+l≥2

1
k!l!gkl(r)z

kz−l ,

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g20(r2) = 〈p,B(q, q)〉,
g11(r2) = 〈p,B(q, q)〉,
g21(r2) = 〈p,C(q, q, q)〉,
g02(r2) = 〈p,B(q, q)〉.

(30)

Now, the coefficient a(0), which determines the direction of the appearance of the invariant
curve in a generic system exhibiting Neimark–Sacker bifurcation, can be computed via

a(0) = Re
[
e−iθ0g21

2

]
− Re

[
(1 − 2eiθ0)e−2iθ0

2(1 − eiθ0)
g20g11

]
− 1

2
|g11|2 − 1

4
|g02|2. (31)

For the above argument and Section 4.7 in [25], we have the following theorem.
Theorem 3.7: Suppose that (u1, u2) is the positive equilibrium point. If the Lemma (3.6)
holds, r2 �= α+β0+β1

α
ln (

α+β0
β0

), r2 �= α+β0+β1
α

ln (
α+β0
β0−α

) and a(0) < 0 (respectively a(0) >
0), then the Neimark–Sacker bifurcation of system (6) at r = r2 is supercritical (respectively,
subcritical) and there exists a unique closed invariant curve bifurcation from (u1, u2) for
r = r2, which is asymptotically stable (respectively, unstable).
Example 3.8: For the parameters values α = 0.4,β0 = 1.2,β1 = 1.2, we have critical
Neimark–Sacker bifurcation point as r2 = 2.83826. In this situation, the eigenvalues are

| λ1,2(r) |=| −0.166667 ± 0.986013i | .
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In addition it is easy to check that

d|λi(r)|
dr

|r=r2 = 0.142857 �= 0 and λki (r2) �= 1 for k = 1, 2, 3, 4.

For r2 = 2.83826 , the Jacobian matrix J at the fixed point is

J = A(r2) =
(−0.333333 −1

1 0

)
(32)

and has the eigenvalues

λ1,2(r2) = −0.166667 ± 0.986013i = e±iθ0 , θ0 = 1.73824.

Let q, p ∈ C2 be complex eigenvectors corresponding to λ1,2 respectively.

q ∼ (0.707107,−0.117851 − 0.697217i)T

and
p ∼ (0.707107, 0.117851 − 0.697217i)T

satisfy

A(r2)q = e1.73824iq,
AT(r2)p = e−1.73824ip.

To obtain the normalization 〈p, q〉 = 1, we can take the normalized vectors as

q = (0.707107,−0.117851 − 0.697217i)T

and
p = (0.707107 − 0.119523i, 1.249x10−16 − 0.717137i)T .

By using the formula (30) the coefficients of the normal of the system (20) can be computed
as follows.

g20(r2) = −1.47428 − 0.64862i
g11(r2) = 0.12624 + 0.0213385i
g21(r2) = 3.48349 + 0.492895i
g02(r2) = −1.60556 + 0.128031i.

From (31), the critical real part is obtained as a(0) = −0.86466. Therefore, a supercritical
Neimark–Sacker bifurcation occurs at r2 = 2.83826 (Figure 4).

The bifurcations diagrams of system (6) in the (r − u1) is given in Figure 4. Numerical
studies show that the Neimark–Sacker bifurcation occurs from the equilibrium point
(u1, u2) = (0.357143, 0.357143) at r2 = 2.83826. For r2 = 2.83826, we have |λ1,2| =
| − 0.166667 ± 0.986013i| = 1 and a(0) = −0.86466 which show that the Neimark–
Sacker bifurcation is supercritical. The phase portrait of the system for increasing value of
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r is obtained in Figure 5. This figure demonstrates the process of how a smooth invariant
circle appears and then disappears from the fixed point. When r exceeds 2.83826, there
appears a circular curve enclosing the fixed points. In addition the maximum Lyapunov
exponents corresponding to Figure 4 are given in Figure 6.

4. Conclusion

The present study deals with the dynamics of a discrete model, which is based on the
discretization of a differential equation with piecewise constant arguments model. The
discrete model (6) exhibits the dynamic behavior of the system of differential equations
with piecewise constant arguments (4). Therefore, we will continue to analyze the system
of (6) instead of equation (4). The stability of fixed point and bifurcations of discrete
dynamical system are investigated. The Flip bifurcation and Neimark–Sacker bifurcation
of this discrete dynamical system are studied by using center manifold theorem and
bifurcation theory. We choose the parameter r as a Flip bifurcation and Neimark–Sacker
bifurcation parameter and show that bifurcation happens at certain bifurcation parameter
r and under some conditions on parameters α,β0 and β1. The Lyapunov exponents are
numerically computed to confirm further the complexity of the dynamical behaviors.
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