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Abstract
In this paper, a discrete-time host–parasitoid model with Hassell growth function for
the host is considered. The sufficient conditions for the existence of the equilibrium
points are obtained and a local stability analysis of the model is performed. By using
the bifurcation theory it is shown that the system undergoes a Neimark–Sacker
bifurcation. In addition, bifurcation diagrams and phase portraits of the model are
given.

MSC: 39A28; 39A30; 92B05

Keywords: Equilibrium point; Host–parasitoid model; Local stability; Population
model

1 Introduction
Discrete models have been applied most readily to groups such as an insect population
where there is a rather natural division of time into discrete generations. A model which
has received considerable attention from experimental and theoretical biologists is the
host–parasitoid system [1]. In mathematical biology, the host–parasitoid interactions are
very popular subjects since they are important to address the natural enemy of an insect
pest. Parasitoids are insect species of which larvae develop as parasites on other insect
species. Parasitoid larvae usually kill their host (sometimes the host is paralyzed by the
ovipositing parasitoid female) whereas adult parasitoids are free-living insects. Parasitoids
and their hosts often have synchronized life-cycles, e.g., both have one generation per year
(monovoltinous).

Generally, the general form of the discrete model used to describe host–parasitoid in-
teractions is [2–4]

⎧
⎨

⎩

Ht+1 = F(Ht , Pt),

Pt+1 = G(Ht , Pt),
(1)

where Ht and Pt are the population densities of hosts and parasitoids at time t, respectively.
The functions F and G give the details of the host–parasitoid interactions. Many authors
have investigated various models considering different functions derived from biological
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facts. The simplest version of the host–parasitoid interactions is the Nicholson–Bailey
model given as follows [5]:

⎧
⎨

⎩

Ht+1 = λHte–kPt ,

Pt+1 = eHt(1 – e–kPt ),
(2)

where the parameters λ > 0 and e > 0 are the intrinsic rate of the natural increase of hosts
and the number of parasitoids which develop from one parasitized host, respectively. The
parameter k > 0 is the per capita searching efficiency of parasitoids. Nicholson and Bailey
developed this model in 1935 and applied it to the parasitoid, Encarsia formosa, and the
host, Trialeurodes vaporariorum [6].

The following model with a density-dependent host–parasitoid model which is a gen-
eralized version of the Nicholson–Bailey model was proposed by Beddington et al. [7]:

⎧
⎨

⎩

Ht+1 = λHte–mHt e–kPt ,

Pt+1 = Ht(1 – e–kPt ),
(3)

where the new parameter m > 0 is the intensity of intra-specific competition in host pop-
ulation. Beddington et al. [7] showed that the inclusion of the host density dependence
stabilizes the Nicholson–Bailey model. Sebastian et al. [8] considered model (3) with lo-
gistic growth function as follows:

⎧
⎨

⎩

Ht+1 = er(1– Ht
K )Hte–mHt e–kPt ,

Pt+1 = bHt(1 – e–kPt ).
(4)

They analyzed the stability of the model with and without Allee effect. We refer the reader
to [9–12] and the references cited therein about the Allee effect.

In this paper, we consider model (3) with the Hassell growth function [13, 14] for the
host and obtain

⎧
⎨

⎩

Ht+1 = R
(1+aHt )b Hte–mHt e–kPt ,

Pt+1 = Ht(1 – e–kPt ),
(5)

where the parameter R is the intrinsic growth rate, a is a scaling parameter affecting the
equilibrium population size, and b incorporates density-dependent effects such as intra-
specific competition. Hassell et al. [13] collected R and b values for about two dozen
species from field and laboratory observations and noted that the majority of these cases
were within the stable region [15]. In this work, we give conditions for the existence of
the equilibrium points of the model (5) and discuss the linear stability of these equilib-
rium points. By using the bifurcation theory we obtain sufficient conditions for the direc-
tion and existence of the Neimark–Sacker bifurcation. All theoretical results obtained are
supported with numerical simulations. The bifurcation diagrams and phase portraits are
given.
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Notice that if m = 0 and a = 1 then the model (5) turns into following the model which
is studied by [16]:

⎧
⎨

⎩

Ht+1 = RHt
(1+Ht )b e–kPt ,

Pt+1 = Ht(1 – e–kPt ).
(6)

In [16], the authors obtained the conditions for the existence of the equilibrium points
and analyzed the equilibrium points (0, 0) and H∗ �= 0, P∗ = 0 of the model (6). However,
stability conditions of the coexistence equilibrium point were not given theoretically and
the authors did not have an interest in bifurcation analysis. In Sect. 3.1, we show that the
model which is studied by [16] undergoes a Neimark–Sacker bifurcation. For this model,
we obtain the bifurcation diagrams and phase portraits, too.

2 Equilibrium points and stability analysis of the model (3)
In this section, we will give conditions for existence of equilibrium points of the model (5)
and discuss the local stability conditions of these equilibrium points.

Theorem 2.1 For the system (5), the following statements hold true.
(a) There exists an extinction equilibrium point (0, 0).
(b) If R ≥ 1, then there exist two equilibrium points as (0, 0) and (H∗

1 , 0).
(c) If 0 < (1+aH∗)b

R emH∗ < 1 then there exists an equilibrium point (H∗, P∗).

Proof (a) To find equilibrium points (H∗, P∗) of the model (5), we write Ht = Ht+1 =
H∗, Pt = Pt+1 = P∗ in Eq. (5) and obtain

⎧
⎨

⎩

H∗ = R
(1+aH∗)b H∗e–mH∗e–kP∗ ,

P∗ = H∗(1 – e–kP∗ ).
(7)

It is clear that, for H∗ = 0, we have equilibrium point (0, 0) for any values of parameters.
(b) Let us assume H∗

1 �= 0 and P∗
1 = 0. Then, by using the first equation of (5), we obtain

R =
(
1 + aH∗

1
)bemH∗

1 . (8)

Let us denote f (x) = (1 + ax)bemx. If the graph of f intersects the horizontal line w = R,
we take equilibrium points. Notice that f is a continuous function, f (0) = 1, f ′(x) > 0,
limx→∞ f (x) = ∞ and when R ≥ 1, there is a unique intersection point. In Fig. 1, we give
the graphs equation (8) with some values of the parameters.

(c) We investigate the positive equilibrium point for H∗ �= 0 and P∗ �= 0. By using the first
equation of (5), we have

e–kP∗
=

(1 + aH∗)b

R
emH∗

(9)

or

P∗ =
–1
k

ln

(
(1 + aH∗)b

R
emH∗

)

. (10)
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Figure 1 Graphs of z = f (x) and w = R functions
such that a = 1, b = 2,m = 0.3 and R = 1.5

If we take 0 < ( (1+aH∗)b

R emH∗ ) < 1, then P∗ is positive. Now, we can write (9) in the second
equation of (5) as

P∗ = H∗
(

1 –
(1 + aH∗)b

R
emH∗

)

. (11)

If Eq. (11) is written in the first of Eq. (5), we obtain

R =
(
1 + aH∗)bemH∗+k[H∗(1– (1+aH∗)b

R emH∗
)]. (12)

Let us take H∗ = x. We denote the right side of Eq. (12) as follows:

F(x) = (1 + ax)bemx+k[x(1– (1+ax)b
R emx)]. (13)

When the graph of the F intersects the horizontal line z = R, we can obtain some equilib-
rium points. By solving F ′(x) = 0, we obtain the following equation:

R(ab + m + k + (ma + ka)x)
1 + (a + 2km)x + kamx2 e–mx = (1 + ax)b.

The function on the right-hand side is monotonically increasing without bounding for
x > 0, the function on the left-hand side is monotonically decreasing and converges to 0
as x → ∞. Thus there is a unique intersection point which means there exists only one
critical point (Fig. 2(a)).

Since F(0) = 1, F ′(0) > 0, F(x) −→ 0 as x → ∞, the critical point is a local maximum
(Fig. 2(b)). �

To determine stability conditions of the discrete system, we can use the following lemma
comprising what are called the Schur–Cohn criteria.

Lemma 2.2 ([17]) The characteristic polynomial, p(λ) = λ2 +p1λ+p0 has all its roots inside
the unit open disk if and only if

(a) p(1) = 1 + p1 + p0 > 0,

(b) p(–1) = 1 – p1 + p0 > 0,

(c) D–
1 = 1 – p0 > 0.
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(a) (b)

Figure 2 (a) The intersection point is the point where F′(x) = 0. (b) Graph of z = F(x) function such
a = 0.1,b = 0.8, k = 0.7 andm = 0.8

Theorem 2.3 For the model (5), the following statements hold true.
(a) If |R| < 1, equilibrium point (0, 0) is locally asymptotically stable.
(b) If | – e–mH∗

1 v–1–bR(–v + aH∗
1 b + H∗

1 mv)| < 1 and H∗
1 < 1

k then equilibrium point
(H∗

1 , 0) is locally asymptotically stable.
(c) Suppose that –v + abH∗ + H∗mv > 0, 2v – abH∗ + H∗kv – H∗mv > 0 and

–1 + bH∗k > 0. Assume that

R1 =
eH∗mvbk(v + abH∗ + H∗mv)

ab + kv + mv
, (14)

R2 =
eH∗mH∗vbk(–v + abH∗ + H∗mv)

2v – abH∗ + H∗kv – H∗mv
, (15)

R3 =
eH∗mH∗2(v)–1+bk(ab + mv)

–1 + bH∗k
, (16)

where v = 1 + aH∗. The positive equilibrium point (H∗, P∗) of the system (5) is locally
asymptotically stable if and only if max{R1, R2} < R < R3.

Proof (a) The Jacobian matrix of the model (5) at the equilibrium point (0, 0) is

J(0, 0) =

(
R 0
0 0

)

,

which has the eigenvalues λ1 = R,λ2 = 0. Hence, if |R| < 1, the equilibrium point (0, 0) is
locally asymptotically stable.

(b) Let us take R ≥ 1. At (H∗
1 , 0), The Jacobian matrix is

J
(
H∗

1 , 0
)

=

(
–e–mH∗

1 v–1–bR(–v + aH∗
1 b + H∗

1 mv) –e–mH∗
1 H∗

1 v–bkR
0 kH∗

1

)

, (17)

which has the eigenvalues λ1 = –e–mH∗
1 v–1–bR(–v + aH∗

1 b + H∗
1 mv) and λ2 = kH∗

1 . By apply-
ing the locally asymptotically stable conditions |λ1| < 1 and |λ2| < 1, we obtain the desired
result.
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(c) By Theorem 2.1, we know that the equilibrium point (H∗, P∗) exists for 0 < vb

R emH∗ <
1. We obtain the Jacobian matrix J at the coexistence equilibrium point (H∗, P∗) of the
following form in which P∗ is eliminated:

J
(
H∗, P∗) =

(
1 – abH∗

v – H∗m –kH∗

1 – eH∗mvb

R
eH∗mH∗vbk

R

)

. (18)

The characteristic polynomial of the jacobian matrix J(H∗, P∗) can be written as follows:

p(λ) = λ2 + λ

(

–1 +
abH∗

v
+ H∗

(

m –
eH∗mvbk

R

))

+ H∗k
(

1 –
abeH∗mH∗v–1+b

R
–

eH∗mH∗vbm
R

)

, (19)

where

p1 = –1 +
abH∗

v
+ H∗

(

m –
eH∗mvbk

R

)

, (20)

p0 = H∗k
(

1 –
abeH∗mH∗v–1+b

R
–

eH∗mH∗vbm
R

)

. (21)

From Lemma (2.2), we have

p(1) =
abH∗

v
+ H∗

(

m –
eH∗mvbk

R

)

+ H∗k
(

1 –
abeH∗mH∗v–1+b

R
–

eH∗mH∗vbm
R

)

.

If R > R1, then p(1) > 0. Considering the condition (b) with the fact R > R2, we have

p(–1) = 2–
abH∗

v
–H∗

(

m–
eH∗mvbk

R

)

+H∗k
(

1–
abeH∗mH∗v–1+b

R
–

eH∗mH∗vbm
R

)

> 0.

Similarly, it is easy to see that, if R < R3, then we have

D–
1 = 1 – H∗k

(

1 –
abeH∗mH∗(v)–1+b

R
–

eH∗mH∗vbm
R

)

> 0. (22)
�

Example 2.4 For the parameter values m = 1, a = 1.1, b = 1.15, k = 2.2, R = 10 and initial
condition (H0, P0) = (0.5, 0.6), the positive equilibrium point of the system (5) is obtained:
(H∗, P∗) = (0.701946, 0.428465). Using these parameter values and equilibrium point, we
obtain R1 = 4.82461, R2 = 0.521704 and R3 = 13.2983. From Theorem 2.3(c), the stability
region is obtained: 4.82461 < R < 13.2983. As a result, for the above parameter values, the
equilibrium point (H∗, P∗) = (0.701946, 0.428465) of the system (5) is locally asymptoti-
cally stable where blue and red graphs represent H(t) and P(t) population, respectively
(see Fig. 3).
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Figure 3 A stable equilibrium point for the system
(5) form = 1,a = 1.1,b = 1.15, k = 2.2, and R = 10

3 Bifurcation analysis
In this section, we will investigate the existence of the Neimark–Sacker bifurcation for the
model (5) and present the conditions and direction of the Neimark–Sacker bifurcation
[18–25].

A Neimark–Sacker bifurcation occurs at a bifurcation point if and only if system (5)
satisfies the following conditions: eigenvalue assignment, transversality and nonresonance
condition [26, 27]. The following lemma gives the eigenvalue assignment condition for the
Neimark–Sacker bifurcation.

Lemma 3.1 ([28]) A pair of complex conjugate roots of p(λ) = λ2 + p1λ + p0 lie on the unit
circle if and only if

(a) p(1) = 1 + p1 + p0 > 0,

(b) p(–1) = 1 – p1 + p0 > 0,

(c) D–
1 = 1 – p0 = 0.

Proposition 3.2 (Eigenvalue assignment) Suppose that –v+abH∗ +H∗mv > 0, 2v–abH∗ +
H∗kv–H∗mv > 0 and –1+bH∗k > 0. If max{R1, R2} < R = R3 then the eigenvalue assignment
condition of the Neimark–Sacker bifurcation in Lemma 3.1 holds.

Proof From the condition R > R1 we have p(1) > 0. On the other hand, the conditions
–v + abH∗ + H∗mv > 0, 2v – abH∗ + H∗kv – H∗mv > 0 and R > R2 lead to p(–1) > 0. Solving
the equation D–

1 = 1 – p0 = 0 with the fact –1 + bH∗k > 0, we get R = R3. This completes
the proof. �

Now we can analyze the transversality and nonresonance condition for the Neimark–
Sacker bifurcation. It is easy to see that the Jacobian matrix of the system (5) has the eigen-
values

λ1,2(R) = α ∓ iβ , (23)

where

α =
eH∗mH∗vbk + aeH∗mH2vbk + Rv – abH∗R – H∗mRv

2Rv
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and

β =
√

–4H∗vk(eH∗mH∗vbmv + aH∗beH∗mvb – Rv)R – (eH∗mH∗v1+bk – (–v + aH∗b + H∗mv)R)2

2Rv
.

For

R =
beH∗mH∗2v–1+bk(ab + mv)

–1 + bH∗k
,

these eigenvalues become

λ1,2(R) = α1 ∓ iβ1,

where

α1 =
1
2

(

1 + b
(

–1 +
1
v

)

– H∗m +
v(–1 + H∗k)
H∗(mv + ab)

)

,

β1 =
√

μ2 – η2

H∗(mv + ab)
,

μ = 2H∗v
(
m + a

(
b + H∗m

))

and

η = 1 + H∗(–k + a(1 + v) + b
(
–v + abH∗) – H∗k(1 + v)

)
– m

+ aH∗(–1 – v + 2bv)m + H∗m2v2.

It is easy to see that

∣
∣λ1,2(R)

∣
∣ = |α1 ∓ iβ1| = 1.

On the other hand, the transversality condition leads to

d|λi(R)|
dR

∣
∣
∣
R=R3

=
e–H∗m(1 + aH∗)1–b(–1 + H∗k)2

2H∗2k(m + a(b + H∗m))
�= 0, i = 1, 2.

From the nonresonance condition trJ(R3) = –p1 �= 0, –1, we have

R �= eH∗mH∗v1+bk
–v + abH∗ + H∗mv

, R �= eH∗mH∗v1+bk
–1 – v + abH∗ + H∗mv

,

which leads to

λk
i (R3) �= 1 for k = 1, 2, 3, 4.

Theorem 3.3 Suppose that (H∗, P∗) is the positive equilibrium point of the system (5). If
Proposition (3.2) holds, R �= eH∗mH∗v1+bk

–v+abH∗+H∗mv , R �= eH∗mH∗v1+bk
–1–v+abH∗+H∗mv , and a(0) < 0 (respectively

a(0) > 0), then the Neimark–Sacker bifurcation of the system (5) at R = R3 is supercritical
(respectively, subcritical) and there exists a unique closed invariant curve bifurcation from
(H∗, P∗) for R = R3, which is asymptotically stable (respectively, unstable).
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Example 3.4 Let us take m = 1, a = 1.1, b = 1.15, k = 2.2 and initial condition (H0, P0) =
(0.5, 0.6). From solutions of the system (7) and (16), the positive equilibrium point and
bifurcation point of the system (5) are obtained: (H∗, P∗) = (0.76664, 0.525223) and R3 =
13.81043, respectively.

In this situation it is easy to check that

∣
∣λ1,2(r)

∣
∣ = |0.119179 ± 0.992873i| = 1

and

d|λi(R)|
dR

∣
∣
∣
R=R3

= 0.0248583 �= 0 and λk
i (R3) �= 1 for k = 1, 2, 3, 4.

To compute the coefficients of the normal form, we convert the origin of the coordinates
to equilibrium point (H∗, P∗) by the change of variables,

⎧
⎨

⎩

H = 0.76664 + x1,

P = 0.525223 + x2.
(24)

This transforms the system (5) into

⎧
⎨

⎩

x1(n + 1) = 13.81043e–0.76664–x1–2.2(0.525223.+x2)(0.76664+x1)
(1+1.1(0.76664+x1)1.15 ,

x2(n + 1) = (1 – e–2.2(0.525223+x2))(0.76664 + x1).
(25)

This system can be written as

Xn+1 = JXn +
1
2

B(Xn, Xn) +
1
6

C(Xn, Xn, Xn) + O
(
X4

n
)
. (26)

Now, the Jacobian matrix of the discrete dynamical system (25) at the equilibrium point
is

J(R3) =

[
–0.2927602 –1.6866079
0.6850969 0.5311179

]

(27)

and the multilinear functions B and C are defined by

Bi(x, y) =
2∑

j,k=1

∂2Xi(ε, 0)
∂εj∂εk

∣
∣
∣
ε=0

xjyk , i = 1, 2

and

Ci(x, y, z) =
2∑

j,k,l=1

∂3Xi(ε, 0)
∂εj∂εk∂εl

∣
∣
∣
ε=0

xjykzl, i = 1, 2.
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Let q ∈ C2 be an eigenvector of J(R3) corresponding to the eigenvalue λ1(R3) such that
λ1(R3)q = eiθ0 q and let p ∈ C2 be an eigenvector of the transposed matrix JT (R3) corre-
sponding to its eigenvalue λ1(R3) such that JT (R3)p = e–iθ0 p. By direct calculation, we have

q ∼ (–0.8432789, 0.2059666 + 0.4964278i)T

and

p ∼ (0.2059666 + 0.4964278i, 0.8432789)T .

These values satisfy

J(R3)q = e1.451333iq

and

JT (R3)p = e–1.451333ip.

To obtain the normalization 〈p, q〉 = 1, we can take the normalized vectors as

q = (–0.8432789, 0.2059666 + 0.4964278i)T

and

p = (–0.592919 + 0.246002, 0.0000026 + 1.0072021i)T .

Now we form x = zq + zq. In this way, the system (25) can be transformed for sufficiently
small |R| into the following form:

z → λ1(R)z + g(z, z, R),

where λ1(R) can be written as λ1(R) = (1 + ϕ(r))eiθ (R) (where ϕ(R) is a smooth function
with ϕ(R3) = 0 and g is a complex-valued smooth function). The Taylor expression of g
with respect (z, z) = (0, 0) is

g(z, z,r) =
∑

k+1≥2

1
k!1!

gkl(R)zkzl,

where

g20(R3) =
〈
p, B(q, q)

〉
= 0.181094 + 0.267089i,

g11(R3) =
〈
p, B(q, q)

〉
= –0.132395 + 0.527414i,

g21(R3) =
〈
p, C(q, q, q)

〉
= 1.56056 – 0.084732i,

g02(R3) =
〈
p, B(q, q)

〉
= 1.72284 + 0.527423i.
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Figure 4 Bifurcation diagram of the system (5) for
values ofm = 1,a = 1.1,b = 1.15, and k = 2.2

Figure 5 Phase portraits of the system (5) for values of R

Now, the coefficient a(0), which determines the direction of the appearance of the invari-
ant curve in a generic system exhibiting a Neimark–Sacker bifurcation, can be computed
via

a(0) = Re

[
e–iθ0 g21

2

]

– Re

[
(1 – 2eiθ0 )e–2iθ0

2(1 – eiθ0 )
g20g11

]

–
1
2
|g11|2 –

1
4
|g02|2. (28)

From Eq. (28), the critical real part is obtained: a(0) = –1.03383. Therefore, a supercritical
Neimark–Sacker bifurcation occurs at R3 = 13.81043 (Figs. 4 and 5).
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Figure 6 A stable equilibrium points of the system
(6) for b = 1.15, k = 2.2,R = 2

3.1 Bifurcation analysis of model (4)
In this section, we give stability conditions of coexistence equilibrium points of the model
(6) and show that the model (6) undergoes a Neimark–Sacker bifurcation. Also, we obtain
the bifurcation diagrams and phase portraits.

Theorem 3.5 Suppose that –1 – H∗ + bH∗ > 0, 2 + 2H∗ – bH∗ + H∗k + H∗2k > 0 and –1 +
H∗k > 0. Assume that

R11 =
(1 + H∗)b(1 + H∗ + bH∗)k

b + k + H∗k
, (29)

R12 =
H∗(1 + H∗)b(–1 – H∗ + bH∗)k
2 + 2H∗ – bH∗ + H∗k + H∗2k

, (30)

R13 =
bH∗2(1 + H∗)–1+bk

–1 + H∗k
. (31)

The positive equilibrium point (H∗, P∗) of the system (6) is locally asymptotically stable if
and only if max{R11, R12} < R < R13.

Example 3.6 For the parameter values b = 1.15, k = 2.2, R = 2, the positive equilibrium
point (H∗, P∗) of the system (6) is calculated as (H∗, P∗) = (0.10076, 0.506785). Using
these parameter values and equilibrium point, we obtain R11 = 1.64979, R12 = –0.40156,
and R13 = 6.01248. From Theorem 3.5, the stability region is obtained: 1.64979 < R <
6.01248. As a result, for the above parameter values, the equilibrium point (H∗, P∗) =
(0.10076, 0.506785) of the system (6) is locally asymptotically stable (Fig. 6).

Proposition 3.7 (Eigenvalue assignment) Suppose that –1–H∗ +bH∗ > 0, 2+2H∗ –bH∗ +
H∗k + H∗2k > 0 and –1 + H∗k > 0. If max{R11, R12} < R = R13 then the eigenvalue assignment
condition of the Neimark–Sacker bifurcation holds.

Theorem 3.8 Suppose that (H∗, P∗) is positive equilibrium point of the system (6). If the
Proposition (3.7) holds, R �= H∗(1+H∗)1+bk

–1–H∗+bH∗ , R �= H∗(1+H∗)1+bk
–2–2H+bH and a(0) < 0 (respectively a(0) > 0),

then the Neimark–Sacker bifurcation of the system (6) at R = R13 is supercritical (respec-
tively, subcritical) and there exists a unique closed invariant curve bifurcation from (H∗, P∗)
for R = R13, which is asymptotically stable (respectively, unstable).
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Figure 7 Bifurcation diagram of the system (6) for
values of b = 1.15, k = 2.2

Example 3.9 For the parameters b = 1.15, k = 2.2 and initial condition (H0, P0) = (0.5, 0.6),
the equilibrium point (H∗, P∗) = (0.59904, 0.263645) and bifurcation point R13 = 3.06434
are obtained. In this case, the norm of the eigenvalues is |λ1,2(r)| = |–0.346474 ±
0.938059i| = 1 (Fig. 7).

4 Conclusion
This study deals with the stability and bifurcation analysis of a discrete-time host–
parasitoid model with Hassell growth function for the host. The existence of the equilib-
rium points and stability conditions of the system (5) are given. Also, we show that model
(5) undergoes a Neimark–Sacker bifurcation by using bifurcation theory.

In the literature, many researchers [29–31] have reported that discrete host–parasitoid
models can have very complex dynamics e.g. exhibit periodic and chaotic dynamics. In
the study [29], the authors show that there is a stable coexistence between the host and
the parasitoid for a large range of the parameter r (intrinsic growth rate for the host popu-
lation), beyond which the system goes through a quasi-periodicity including a Neimark–
Sacker bifurcation. When r is slightly increased beyond a threshold value, a chaotic at-
tractor abruptly appears and the periodic attractor disappears. These results are also valid
for our system. Figure 4 shows the bifurcation diagram of the system (5) for the parasitoid
population and the host population with m = 1, a = 1.1, b = 1.15 and k = 2.2 as the param-
eter R (intrinsic growth rate for the host population) increases. If the parameter R reaches
13.2983, then quasi-periodic solutions occur due to the Neimark–Sacker bifurcation.

We also compute the maximum Lyapunov exponent for detecting the presence of chaos
in the model. The maximum Lyapunov exponent is the most useful dynamical diagnostic
for chaotic system. If the maximum Lyapunov exponent is positive, this implies that we
have a chaotic attractor. For a stability state or a period attractor, the maximum Lyapunov
exponent must be positive. The existence of chaotic regions in the parameter space is
clearly visible in Fig. 8.

We note that the model (6) which is studied by [16] is the special case of model (5) for
m = 0 and a = 1. In [16], the authors have not given the stability conditions for coexistence
equilibrium point and they have not performed a bifurcation analysis. In this paper, we
give stability conditions of the coexistence equilibrium point of model (6) and show that
model (6) undergoes a Neimark–Sacker bifurcation, too. Finally, all theoretical results for
model (5)–(6) obtained are supported with numerical simulations.
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Figure 8 Maximum Lyapunov exponents
corresponding to Fig. 4
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