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Abstract
The generalized regularized long wave (GRLW) equation has
been developed to model a variety of physical phenomena such
as ion-acoustic and magnetohydrodynamic waves in plasma,
nonlinear transverse waves in shallow water and phonon pack-
ets in nonlinear crystals. This paper aims to develop and
analyze a powerful numerical scheme for the nonlinear GRLW
equation by Petrov–Galerkin method in which the element
shape functions are cubic and weight functions are quadratic
B-splines. The proposed method is implemented to three ref-
erence problems involving propagation of the single solitary
wave, interaction of two solitary waves and evolution of soli-
tons with the Maxwellian initial condition. The variational for-
mulation and semi-discrete Galerkin scheme of the equation
are firstly constituted. We estimate rate of convergence of
such an approximation. Using Fourier stability analysis of the
linearized scheme we show that the scheme is uncondition-
ally stable. To verify practicality and robustness of the new
scheme error norms L2, L∞ and three invariants I1, I2, and I3

are calculated. The computed numerical results are compared
with other published results and confirmed to be precise and
effective.
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1 INTRODUCTION

The generalized regularized long wave (GRLW) equation was originated by a famous nonlinear analyst
Peregrine who first successfully introduced the RLW equation as a perfect alternative to the famous
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Korteweg–de Vries (KdV) equation for studying soliton phenomena and as a mathematical model for
small amplitude long waves on the surface of water [1]. Nonlinear evolution equations play funda-
mental roles in various fields of science mostly in physics, applied mathematics, and in engineering
problems. Analytical solutions of these equations are commonly not derivable, particularly when the
nonlinear terms are contained. Numerical solutions of these equations are very practical to analyze
the physical phenomena due to the fact that analytical solutions of these equations are found for the
restricted boundary and initial conditions. The RLW equation

ut + ux + 𝑎𝑢𝑢x − 𝑏𝑢𝑥𝑥𝑡 = 0, (1)

is one of the important model in physics media on account of it defines phenomena with weak nonlin-
earity and dispersion waves, involving nonlinear transverse waves in shallow water, ion-acoustic waves
in plasma, hydromagnetic wave in cold plasma, plasma, elastic media, optical fibers, acoustic-gravity
waves in compressible fluids, pressure waves in liquid–gas bubbles and acoustic waves inharmonic
crystals. The solutions of this equation are sorts of solitary waves called as solitons whose form are
not affected by a collision. It was first alleged by Peregrine [1, 2] for studying soliton phenomena and
as a sample for small-amplitude long-waves on the surface of water in a channel and widely studied by
Benjamin et al. [3]. In physical situations such as unidirectional waves propagating in a water channel,
long-crested waves in near-shore zones, and many others, the RLW equation serves as an alternative
model to the KdV equation [4, 5]. An exact solution of the equation was obtained under the limited
initial and boundary conditions in [6] for this reason it got fascinate from a numerical point of view.
Therefore, numerical solutions of the RLW equation have been the matter of many papers. Various
effective methods have been presented to solve the equation such as finite difference method [7–10],
pseudo-spectral method [11], meshfree method [12], Adomian decomposition method [13] and various
forms of finite element methods in [14–17]. Indeed, the RLW equation is a special case of the GRLW
equation which is an alternative to the KdV equation for describing nonlinear dispersive waves and
can be used to characterize phenomena with weak nonlinearity and dispersion waves. It is defined as

ut + ux + p(p + 1)upux − 𝜇u𝑥𝑥𝑡 = 0, (x, t) ∈ Ω × (0,T], (2)

subject to some suitable initial and boundary conditions where p is a positive integer, 𝜇 is posi-
tive constant. Some physical boundary conditions require u that u→ 0 for x→ 𝜕Ω. In Equation (2)
u indicates dimensionless surface elevation, x distance and t time. On the other hand, the GRLW
equation has received much less attention, presumably because of its higher nonlinearity for p> 2 and
the fact that it possesses a finite number of conserved quantities and admits solitary waves as solu-
tions, but, unlike other equations, the stability of its solutions depends on their velocity [18]. Some
solitary wave solutions for GRLW equations have been obtained by Hamdi et al. [19] and Ramos
[20] studied solitary wave interactions based on the separation of the temporal and spatial deriva-
tives. Zhang [21] implemented finite difference method for a Cauchy problem while Kaya [13], Kaya
and El-Sayed [22] indicated the numerical solution of the GRLW equation by using the Adomian
decomposition method. Roshan [23] have procured numerical solutions of the GRLW equation by
the application of Petrov–Galerkin method, which uses a linear hat function as the trial function and
a quintic B-spline function as the test function. Wang et al. [24] offered a mesh-free method for the
GRLW equation based on the moving least-squares approximation. Karakoç [25] and Zeybek [26] have
obtained solitary-wave solutions of the GRLW equation by using septic B-spline collocation and cubic
B-spline lumped Galerkin method. Numerical solutions of the GRLW equation have been obtained by
Soliman [27] using He’s variational iteration method. Mokhtari and Mohammadi [28] suggested the
Sinc-collocation method for this equation. A time-linearization method that uses a Crank–Nicolson
procedure in time and three point, fourth-order accurate in space, compact difference equations, is
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presented and used to determine the solutions of the GRLW equation and a modified version thereof
(mGRLW) by García-López and Ramos [29]. The another special case of the GRLW equation is the
modified-RLW (MRLW) equation for p = 2. MRLW equation was solved numerically by various
methods [30–36]. We would refer [37–42] for an application for such models of nonlinear dispersive
equations.

Spline functions are a class of piecewise polynomials which provide continuity features being
subject to the degree of the polynomials. They are spectacular mathematical instrument for numerical
approximations because of their numerous popular specialties. One kind of splines, noted as B-splines,
has been used in obtaining the numerical solution of the GRLW equation [25, 26, 31, 32, 43, 44].
Assemblies of B-splines are used as trial functions in the Petrov–Galerkin methods. Especially, cubic
B-splines associated with finite element methods have been verified to give very smooth solutions,
and use of the cubic B-splines as shape functions in the finite element method warranties continuity
of the first and second-order derivatives of trial solutions at the mesh points [15].

In this study, we have designed a lumped Petrov–Galerkin method for the GRLW equation using
cubic B-spline function as element shape function and quadratic B-spline function as the weight
function. The plan of this paper is as follows:

• In Section 2, the governing equation and its variational formulation and newly established
theorems are presented.

• A semi-discrete Galerkin scheme of the equation is notified in Section 3.
• In Section 4, a lumped Petrov–Galerkin finite element technique has been practiced to GRLW

equation. Resulting system can be solved with a sort of the Thomas algorithm.
• Section 5 is dedicated to stability analysis of the method.
• The results of numerical examples are reported in Section 6. The last section is a brief

conclusion.

2 VARIATIONAL FORMULATION AND ENERGY ESTIMATES

Here we are dedicated to write the initial-boundary value problem in a variational form, and use this
weak form to derive some estimates for its solution. We start by proving existence and uniqueness
of solutions by using this variational form. The higher order nonlinear space time dependent partial
differential equation (2) can be written as

ut − 𝜇Δut = ∇ (u), (x, t) ∈ Ω × (0,T] (3)

where  (u) = − u(1+ pup), subject to the initial condition

u(x, 0) = f1(x), x ∈ Ω, (4)

and the boundary conditions
u(x, t) = 0, (x, t) ∈ 𝜕Ω × (0,T]. (5)

In order to define the weak form of the solutions of (3) and to examine the existence and uniqueness
of the weak solutions we define the following spaces.

Here Hk(Ω), k≥ 0 (integer) is an usual normed space of real valued functions on Ω and

Hk
0(Ω) =

{
v ∈ Hk(Ω) ∶ 𝜕jv

𝜕𝜈j = 0 on 𝜕Ω, i = 0, 1,… , k − 1

}
,

and the norm on the space is denoted by ‖⋅‖k which is the usual Hk norm, and when k = 0 ‖⋅‖0 = ‖ ⋅ ‖
represents the well known L2 norm and (⋅, ⋅) represents L2 inner product [45].
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Multiplying (3) by 𝜉 ∈ H1
0(Ω), and then integrating over Ω we have

(ut, 𝜉) − 𝜇(Δut, 𝜉) = (∇ (u), 𝜉).

Applying Green’s theorem on the above integral we opt to find u(⋅, t) ∈ H1
0 so that

(ut, 𝜉) + 𝜇(∇ut,∇𝜉) = −( (u),∇𝜉), ∀ 𝜉 ∈ H1
0 , (6)

with u(0) = u0.

Theorem 1 If u is a solution of (6) then

‖u(t)‖1 = ‖u0‖1, t ∈ (0, T], and ‖u‖L∞(L∞(Ω)) ≤ C‖u0‖1

holds if u0 ∈ H1
0 , and C is a positive constant.

Proof. Replacing 𝜉 ∈ H1
0 by u ∈ H1

0 in (6) results

(ut, u) + 𝜇(∇ut,∇u) = −( (u),∇u) (7)

with u(0) = u0 which gives

1
2
𝑑

𝑑𝑡
[‖u‖2 + 𝜇‖∇u‖2] = ∫Ω

u[∇ ⋅  (u)]𝑑𝑥. (8)

Now

u∇ ⋅  (u) = ∇ ⋅ [ (u)u] − ∇ ⋅ [(u)],
if u ∈ H1

0 where ′(u) =  (u). For the simplicity of the analysis from now on in this
section we fix 𝜇 = 1. The analysis for a general 𝜇 is the similar. Also, from the boundary
conditions in (7) we have u = 0 on 𝜕Ω and so (0) = 0, and then

∫Ω
u[∇ ⋅  (u)]𝑑𝑥 = ∫Ω

∇(u (u))𝑑𝑥 = 0.

Thus (8) yields
1
2
𝑑

𝑑𝑡
(‖u‖2

1) = 0,

and so ‖u‖2
1 = ‖u0‖2

1,

confirms the proof of first part. The proof of second part follows from Sobolev embedding
theorem [45, 46]. ▪

Theorem 2 A unique solution of (6) exists for any T> 0 such that

u ∈ L∞(0,T ,H1
0(Ω)) where (u(x, 0), 𝜉) = (u0, 𝜉), 𝜉 ∈ H1

0(Ω),

if u0 ∈ H1
0 for any T> 0.

Proof. In order to prove the uniqueness of the solution of (6) we consider an orthogonal
basis {wi}∞i=1 for H1

0(Ω) and

vm = span{w1,w2,… ,wm}.
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Now we define

um(t) =
m∑

i=1

ci(t)wi,

for each t> 0 to satisfy

(um
t , 𝜉) + (∇um

t ,∇𝜉) = −( (um),∇𝜉), ∀ 𝜉 ∈ vm, (9)

with um(0) = u0, m where

u0,m = um(0) =
m∑

i=1

ci(0)wi = Pmu0.

Here Pm is an orthogonal projection onto finite dimensional space vm, and u0,m → u0 ∈
H1

0(Ω) [45, 46]. Hence the weak form (9) can be written as a system of first order nonlinear
ordinary differential equation and there exist a positive time tm > 0 such that the nonlinear
system of differential equations has a unique solution um over (0, tm).

Also from Theorem 1 it is easy to see that

‖um‖∞ ≤ C‖u0‖1

and ‖ (um)‖2 ≤ C‖u0‖2
1

which shows that  (um) is bounded in L∞(0, T , L2(Ω)). Now by setting 𝜉 = um
t in (9)

(um
t , um

t ) + (∇um
t ,∇um

t ) = −( (um),∇um
t ).

Thus ‖um
t ‖2

1 = −( (um),∇um
t )

which yields ‖um
t ‖1 ≤ C‖u0‖1.

Hence {um} and {um
t } are uniformly bounded in L∞(0,T ,H1

0(Ω)).
By setting 𝜉 = wi in (9) we have

(um
t ,wi) + (∇um

t ,∇wi) = −( (um),∇wi).

Thus the existence of solutions of the problem follows from the denseness of {wi} in
H1

0(Ω).
Considering u and v as two solutions of (6) with u(0) = 0 and v(0) = 0, we define

W = u− v. Then W(0) = 0. Also

(Wm
t , 𝜉) + (∇Wm

t ,∇𝜉) = −( (Wm),∇𝜉).

Replacing 𝜉 by W in the above equation and following the boundedness of u and v one
obtains [45, 47]

𝑑

𝑑𝑡
‖W‖1 ≤ C‖W‖1.

Integrating the above inequality over [0, t] yields

‖W‖1 ≤ ‖W(0)‖1 + C ∫
t

0
‖W‖1𝑑𝑠.
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Now applying Gronwall’s Lemma it is easy to see that

‖W‖1 ≤ e𝐶𝑡‖W(0)‖1 = 0,

which confirms W = 0 completes the proof [45, 47]. ▪

3 THE SEMIDISCRETE GALERKIN B-SPLINE FINITE ELEMENT
METHOD

Consider 0< h< 1. A finite dimensional subspace Sh of H1
0(Ω) is considered such that for u ∈ H1

0(Ω)∩
H4(Ω), there exists a constant C independent of h [45–47] such that

inf
𝜉∈Sh

(‖u − 𝜉‖ + ‖u − 𝜉‖1) ≤ 𝐶ℎ4. (10)

Here we aim to find solutions of a semi-discrete formulation of (3) uh : [0, T]→ Sh such that

(uℎ𝑡, 𝜉) + (∇uℎ𝑡,∇𝜉) = −( (uh),∇𝜉), 𝜉 ∈ Sh, (11)

with uh(0) = u0, h ∈ Sh is an approximation of u0. Before proving the original accuracy result we first
establish a priori bound of the approximate solution of (11) below.

Theorem 3 The solution uh ∈ Sh of (11) satisfies

‖uh‖2
1 = ‖u0,h‖2

1, t ∈ (0, T],

and ‖uh‖L∞(L∞(Ω)) ≤ C‖u0,h‖1

holds where C is a positive constant.

Proof. The proof is trivial from our discussion in the previous section (Theorem 1). ▪

Now we move onto establish the theoretical bound of the error in the semi-discrete Scheme (11)
of (6).

To that end we consider the following bilinear form

A(u, v) = (∇u,∇v), ∀ u, v ∈ H1
0 ,

which satisfies the boundedness property

∣ A(u, v) ∣≤ M‖u‖1‖v‖1,∀ u, v ∈ H1
0 (12)

and coercivity property (on Ω)

A(u, u) ≥ 𝛼‖u‖1,∀ u ∈ H1
0 , for some 𝛼 ∈ R. (13)

Here A satisfies

A(u − ũ, 𝜉) = 0, 𝜉 ∈ Sh, (14)

where ũ is an auxiliary projection of u [45–47]. Now the accuracy result in such a semi-discrete
approximation (11) of (6) can be established by the following theorem.
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Theorem 4 Let uh ∈ Sh satisfies (11) and u ∈ H1
0(Ω) be that of (6), then the inequality

below holds ‖u − uh‖ ≤ 𝐶ℎ4,

where C> 0 if 𝜃(0) = 0 hold.

Proof. Considering e = u− uh we write

e = 𝜈 + 𝜃, where 𝜈 = u − ũ and 𝜃 = ũ − uh.

Here

𝛼‖u − ũ‖2
1 ≤ A(u − ũ, u − ũ)
= A(u − ũ, u − 𝜉), 𝜉 ∈ Sh, from (13) and (14).

Also It follows from (12) and (14) and [47] that‖u − ũ‖1 ≤ inf
𝜉∈Sh

‖u − 𝜉‖1. (15)

So (10) and (15) confirms the following inequalities‖𝜈‖1 ≤ 𝐶ℎ3‖u‖4, and ‖𝜈‖ ≤ 𝐶ℎ4‖u‖4.

Applying 𝜕/𝜕t on (14) and having some simplifications yields [47]‖𝜈t‖ ≤ 𝐶ℎ4‖ut‖4.

Also subtracting (11) from (6) it is easy to see that

(𝜃t, 𝜉) + (∇𝜃t,∇𝜉) = −(𝜈t, 𝜉) − ( (u) −  (uh),∇𝜉). (16)

Now substituting 𝜉 = 𝜃 in (16), and then applying Cauchy–Schwarz inequality one gets

1
2
𝑑

𝑑𝑡
‖𝜃‖2

1 ≤ ‖𝜈t‖‖𝜃‖ + ‖ (u) −  (uh)‖‖∇𝜃‖.
Here ‖ (u) −  (uh)‖ ≤ C(‖𝜈‖ + ‖𝜃‖),
comes from Lipschitz conditions and boundedness of u and uh and thus

𝑑

𝑑𝑡
‖𝜃‖2

1 ≤ C(‖𝜈t‖2 + ‖𝜈‖2 + ‖𝜃‖2 + ‖∇𝜃‖2).

So ‖𝜃‖2
1 ≤ ‖𝜃(0)‖2

1 + C ∫
t

0
(‖𝜈t‖2 + ‖𝜈‖2 + ‖𝜃‖2 + ‖∇𝜃‖2)𝑑𝑡.

Hence Gronwall’s lemma, bounds of 𝜈 and 𝜈t confirms‖𝜃‖1 ≤ C(u)h4,

if 𝜃(0) = 0, completes the proof [46, 47]. ▪

4 NUMERICAL IMPLEMENTATIONS OF THE SCHEME

For numerical implementation we restrict ourselves in one space dimension only and we consider
Ω⊂R. To be specific the solution domain is limited to a finite interval a≤ x≤ b. Partition the interval
[a, b] at points by xm where a = x0 < x1 < · · ·< xN = b and let h = (b− a)/N, m = 0, 1, 2, …, N. On
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this partition, we shall need the following cubic B-splines 𝜙m(x) at the points xm, m = 0, 1, 2, …, N.
The cubic B-spline functions 𝜙m(x), (m = − 1(1) N + 1) are identified as follows [48]

𝜙m(x) =
1
h3

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(x − xm−2)3, x ∈ [xm−2, xm−1),
h3 + 3h2(x − xm−1) + 3h(x − xm−1)2 − 3(x − xm−1)3, x ∈ [xm−1, xm),
h3 + 3h2(xm+1 − x) + 3h(xm+1 − x)2 − 3(xm+1 − x)3, x ∈ [xm, xm+1),
(xm+2 − x)3, x ∈ [xm+1, xm+2],
0 otherwise.

(17)

We search the approximation solution uN(x, t) to the exact solution u(x, t) which uses these cubic
B-splines as trial functions

uN(x, t) =
N+1∑
j=−1

𝜙j(x)𝛿j(t), (18)

where 𝛿j(t) are time depended quantities or the nodal parameters to be detected from boundary and
weighted residual conditions. Applying the following transformation

ℎ𝜂 = x − xm 0 ≤ 𝜂 ≤ 1, (19)

the finite interval [xm, xm+ 1] is turned into more easily practicable interval [0, 1]. Therefore cubic
B-spline shape functions (17) depending on variable 𝜂 on the region [0, 1] rearranged with

𝜙m−1 = (1 − 𝜂)3,
𝜙m = 1 + 3(1 − 𝜂) + 3(1 − 𝜂)2 − 3(1 − 𝜂)3, (20)

𝜙m+1 = 1 + 3𝜂 + 3𝜂2 − 3𝜂3,

𝜙m+2 = 𝜂3.

All splines, apart from 𝜙m− 1(x), 𝜙m(x), 𝜙m+ 1(x), 𝜙m+ 2(x) and their four principal derivatives are null
over the region [0, 1]. Thereby variation of u(x, t) over [0, 1] is approximated by

uN(𝜂, t) =
m+2∑

j=m−1

𝛿j𝜙j, (21)

where 𝛿m− 1, 𝛿m, 𝛿m+ 1, 𝛿m+ 2 and B-spline element functions 𝜙m− 1, 𝜙m, 𝜙m+ 1, 𝜙m+ 2 as element shape
functions. The nodal values u and its derivatives up to second order at the knots xm are given in terms
of the parameters 𝛿m from the use of the B-splines (20) and the trial solution (21):

um = u(xm) = 𝛿m−1 + 4𝛿m + 𝛿m+1,

u′
m = u′(xm) = 3(−𝛿m−1 + 𝛿m+1), (22)

u′′
m = u′′(xm) = 6(𝛿m−1 − 2𝛿m + 𝛿m+1).

We take the weight functions Φm as quadratic B-splines. The quadratic B-splines Φm at the knots xm
are defined as [48]:

Φm(x) =
1
h2

⎧⎪⎪⎨⎪⎪⎩

(xm+2 − x)2 − 3(xm+1 − x)2 + 3(xm − x)2, x ∈ [xm−1, xm),
(xm+2 − x)2 − 3(xm+1 − x)2, x ∈ [xm, xm+1),
(xm+2 − x)2, x ∈ [xm+1, xm+2),
0 otherwise.

(23)
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When we take into consideration of the transformation (19), quadratic B-splines Φm are written as

Φm−1 = (1 − 𝜂)2,
Φm = 1 + 2𝜂 − 2𝜂2, (24)

Φm+1 = 𝜂2.

Performing the Petrov–Galerkin method to Equation (2) the weak form of Equation (2) is attained as

∫
b

a
Φ(ut + ux + p(p + 1)upux − 𝜇u𝑥𝑥𝑡)𝑑𝑥 = 0. (25)

For a unique element [xm, xm+ 1] using (19) into Equation (25) we obtain the following integral
equation:

∫
1

0
Φ
(

ut +
1
h

u𝜂 +
p(p + 1)

h
ûpu𝜂 −

𝜇

h2
u𝜂𝜂𝑡

)
𝑑𝜂 = 0, (26)

where û is accepted as a constant over an element to ease the integral, and Integrating (26) by parts
and then using (2) yields:

∫
1

0
[Φ(ut + 𝜆u𝜂) + 𝛽Φ𝜂u𝜂𝑡]𝑑𝜂 = 𝛽Φu𝜂𝑡

|||||
1

0

, (27)

where 𝜆 = 1+p(p+1)ûp

h
and 𝛽 = 𝜇

h2
. Assuming the weight function Φi with quadratic B-spline shape

functions given by Equation (23) and substituting (21) into (27), we get the element contributions in
the form:

m+2∑
j=m−1

[(
∫

1

0
Φi𝜙j + 𝛽Φ′

i𝜙
′
j

)
𝑑𝜂 − 𝛽Φi𝜙

′
j

|||||
1

0

]
𝛿̇e

j +
m+2∑

j=m−1

(
𝜆∫

1

0
Φi𝜙

′
j𝑑𝜂

)
𝛿e

j = 0, (28)

where 𝛿e = (𝛿m− 1, 𝛿m, 𝛿m+ 1, 𝛿m+ 2)T are the element parameters and dot states differentiation to t which
can be written in matrix form as follows:

[Ae + 𝛽(Be − Ce)]𝛿̇e + 𝜆De𝛿e = 0. (29)

The element matrices Ae
𝑖𝑗 ,Be

𝑖𝑗 ,Ce
𝑖𝑗 and De

𝑖𝑗 are rectangular 3× 4 given by the following integrals;

Ae
𝑖𝑗 = ∫

1

0
Φi𝜙j𝑑𝜂 = 1

60

[
10 71 38 1
19 221 221 19
1 28 71 10

]
,

Be
𝑖𝑗 = ∫

1

0
Φ′

i𝜙
′
j𝑑𝜂 = 1

2

[
3 5 −7 −1
−2 2 2 −2
−1 −7 5 3

]
,

Ce
𝑖𝑗 = Φi𝜙

′
j|10 = 3

[
1 0 −1 0
1 −1 −1 1
0 −1 0 1

]
,

De
𝑖𝑗 = ∫

1

0
Φi𝜙

′
j𝑑𝜂 = 1

10

[ −6 −7 12 1
−13 −41 41 13
−1 −12 7 6

]
where i takes the values 1, 2, 3 and the j takes the values m− 1, m, m+ 1, m+ 2 for the typical element

[xm, xm+ 1]. A lumped value for u is obtained from
(

um+um+1

2

)p
as

𝜆 = 1 + p(p + 1)
2ph

(𝛿m−1 + 5𝛿m + 5𝛿m+1 + 𝛿m+2)p.
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Combining contributions from all elements induces to the following matrix equations

[A + 𝛽(B − C)]𝛿̇ + 𝜆𝐷𝛿 = 0, (30)

where 𝛿 = (𝛿−1, 𝛿0, …, 𝛿N , 𝛿N + 1)T global element parameters. The A, B, C and 𝜆D matrices are
rectangular and row m of each has the following form:

A = 1
60

(1, 57,302, 302, 57, 1, 0), B = 1
2
(−1,−9, 10, 10,−9,−1, 0),

C = (0, 0, 0, 0, 0, 0, 0)

𝜆𝐷 = 1
10

(
−𝜆1,−12𝜆1 − 13𝜆2, 7𝜆1 − 41𝜆2 − 6𝜆3, 6𝜆1 + 41𝜆2 − 7𝜆3,

13𝜆2 + 12𝜆3, 𝜆3

)
where

𝜆1 = 1 + p(p + 1)
2ph

(𝛿m−2 + 5𝛿m−1 + 5𝛿m + 𝛿m+1)p, 𝜆2 = 1 + p(p + 1)
2ph

(𝛿m−1 + 5𝛿m + 5𝛿m+1 + 𝛿m+2)p,

𝜆3 = 1 + p(p + 1)
2ph

(𝛿m + 5𝛿m+1 + 5𝛿m+2 + 𝛿m+3)p.

Replacing the time derivative 𝛿̇ by the forward difference approximation 𝛿̇ = (𝛿n+1 − 𝛿n)∕Δt and the
parameter 𝛿 by the Crank–Nicolson formulation 𝛿 = (1/2)(𝛿n + 𝛿n+ 1), then Equation (30) reduce to
the following matrix system:[

A + 𝛽(B − C) + 𝜆Δt
2

D
]
𝛿n+1 =

[
A + 𝛽(B − C) − 𝜆Δt

2
D
]
𝛿n (31)

where t is time step. Applying the boundary conditions (5) to the system (31), (N + 1)× (N + 1) matrix
system is obtained. This last system is actively solved with a variant of the Thomas algorithm but in
solution process, two or three inner iterations 𝛿n* = 𝛿n + (1/2)(𝛿n − 𝛿n− 1) are also practiced at each
time step to overcome the non-linearity. Ultimately, a typical member of the matrix system (31) is
written in terms of the nodal parameters 𝛿n and 𝛿n+ 1 as:

𝛾1𝛿
n+1
m−2 + 𝛾2𝛿

n+1
m−1 + 𝛾3𝛿

n+1
m + 𝛾4𝛿

n+1
m+1 + 𝛾5𝛿

n+1
m+2 + 𝛾6𝛿

n+1
m+3

= 𝛾6𝛿
n
m−2 + 𝛾5𝛿

n
m−1 + 𝛾4𝛿

n
m + 𝛾3𝛿

n
m+1 + 𝛾2𝛿

n
m+2 + 𝛾1𝛿

n
m+3, (32)

where

𝛾1 = 1
60

− 𝛽

2
− 𝜆Δt

20
, 𝛾2 = 57

60
− 9𝛽

2
− 25𝜆Δt

20
, 𝛾3 = 302

60
+ 10𝛽

2
− 40𝜆Δt

20
,

𝛾4 = 302
60

+ 10𝛽
2

+ 40𝜆Δt
20

, 𝛾5 = 57
60

− 9𝛽
2

+ 25𝜆Δt
20

, 𝛾6 = 1
60

− 𝛽

2
+ 𝜆Δt

20
.

To start the evolution of the vector of parameters 𝛿n, 𝛿0 must be calculated by using the periodic
boundary and initial conditions u(x, 0). So, using the relations at the knots uN(xm, 0) = u(xm, 0), m = 0,
1, 2, …, N and u′

N(x0, 0) = u′(xN , 0) = 0 together with a variant of algorithm by Thomas, the initial
vector 𝛿0 is easily got from the following matrix equation

⎡⎢⎢⎢⎢⎣
−3 0 3
1 4 1

⋱
1 4 1
−3 0 3

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝛿0
−1
𝛿0

0
⋮
𝛿0

N
𝛿0

N+1

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
u′(x0, 0)
u(x0, 0)

⋮
u(xN , 0)
u′(xN , 0)

⎤⎥⎥⎥⎥⎦
.
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5 STABILITY ANALYSIS

In this section, like other authors [16, 23, 31, 32] our stability analysis is based on the Von Neumann
theory in which the growth factor of a typical Fourier model defined as

𝛿n
j = gneijkh, (33)

where k is mode number and h is element greatness. To implement the Fourier stability analysis,
Equation (2) needs to be linearized by assuming that up in the nonlinear term upux is locally constant.
Substituting (33) into linearized scheme of (32), we get

g = a − 𝑖𝑏

a + 𝑖𝑏
, (34)

where

a = (302 + 300𝛽) cos
(
𝜃

2

)
h + (57 − 270𝛽) cos

(3𝜃
2

)
h + (1 − 30𝛽) cos

(5𝜃
2

)
h,

b = 120𝜆Δt sin
(
𝜃

2

)
h + 75𝜆Δt sin

(3𝜃
2

)
h + 3𝜆Δt sin

(5𝜃
2

)
h, (35)

so that ∣g∣ is 1 and our linearized scheme is neutrally stable.

6 COMPUTER IMPLEMENTATIONS AND ILLUSTRATIONS

In this part, we introduce the results of the numerical experiments of our algorithm for the solution of
the GRLW Equations (4) and (5) for a single solitary wave and an interaction of two solitary waves.
We also display the development of the Maxwellian initial condition into solitary waves. In order to
demonstrate how favorable our numerical algorithm foresees the position and amplitude of the solution
as the simulation progresses, we provide for the following error norms:

L2 = ||uexact − uN||2 ≃

√√√√h
N∑

J=0

|uexact
j − (uN)j|2,

and
L∞ = ||uexact − uN||∞ ≃ max

j
|uexact

j − (uN)j|.
With the boundary condition u→ 0 for x→ ±∞ the exact solution of the GRLW equation is [29]

u(x, t) = p

√
c(p + 2)

2p
sec h2

[
p
2

√
c

𝜇(c + 1)
(x − (c + 1)t − x0)

]
where p

√
c(p+2)

2p
is amplitude, c+ 1 is the speed of the wave traveling in the positive direction of the

x-axis, x0 is arbitrary constant. There are three conserved quantities

I1 = ∫
∞

−∞
u(x, t)𝑑𝑥,

I2 = ∫
∞

−∞
[u2(x, t) + 𝜇u2

x(x, t)]𝑑𝑥, (36)

I3 = ∫
∞

−∞
[u4(x, t) − 𝜇u2(x, t)]𝑑𝑥

for the GRLW equation. These are correspond to mass, momentum and energy respectively.
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TABLE 1 Invariants and errors for single solitary wave with p = 2, c = 1, h = 0.2, Δt = 0.025, 𝜇 = 1, x∈ [0, 100]

Time I1 I2 I3 L2 × 103 L∞ × 103

0 4.442866 3.299813 1.414214 0.000000 0.000000

2 4.442940 3.299938 1.414330 1.948707 1.190456

4 4.443005 3.300033 1.414425 2.362855 1.222540

6 4.443068 3.30012 1.414515 2.449792 1.198936

8 4.443129 3.300213 1.414604 2.448242 1.150862

10 4.443175 3.300302 1.414692 2.415468 1.079686

TABLE 2 Comparisons of results for single solitary wave with p = 2, c = 1, h = 0.2, Δt = 0.025, 𝜇 = 1, x∈ [0, 100]

Method I1 I2 I3 L2 × 103 L∞ × 103

Analytic 4.44288 3.29983 1.41421 0.000000 0.000000

Our method 4.443175 3.300302 1.414692 2.415468 1.079686

Petrov–Galerkin [23] 4.44288 3.29981 1.41416 3.00533 1.68749

Septic collocation first scheme [25] 4.442866 3.299822 1.414204 2.632463 1.393064

Septic collocation second scheme [25] 4.442866 3.299715 1.414312 2.571481 1.340210

Cubic Galerkin [26] 3.801670 2.888066 0.979294 13.291080 8.478107

Cubic B-spline coll-CN [30] 4.442 3.299 1.413 16.39 9.24

Cubic B-spline coll+PA-CN [30] 4.440 3.296 1.411 20.3 11.2

Cubic B-spline collocation [31] 4.44288 3.29983 1.41420 9.30196 5.43718

FIGURE 1 Motion of single solitary wave for p = 2, c = 1, h = 0.2, Δt = 0.025 over the interval [0, 100] at t = 0, 5, 10

6.1 Dispersion of a single solitary wave

In our computational work for the first set, we prefer the parameters p = 2, c = 1, h = 0.2, Δt =0.025,
𝜇 = 1, x0 = 40 with interval [0, 100] to match up with that of previous papers [23, 25, 26, 30, 31].
These values yield the amplitude 1.0 and the run of the algorithm is continued up to time t = 10
over the solution region. Analytical values of the invariants are I1 = 4.442883, I2 = 3.299832, and
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FIGURE 2 Error graph for p = 2, c = 1, h = 0.2, Δt = 0.025 at t = 10

TABLE 3 Invariants and errors for single solitary wave with p = 3, c = 6/5, h = 0.1, Δt = 0.025, 𝜇 = 1, x∈ [0, 100]

Time I1 I2 I3 L2 × 103 L∞ × 103

0 3.797185 2.881250 0.972968 0.000000 0.000000

2 3.797187 2.881258 0.973414 1.700682 1.174285

4 3.797187 2.881257 0.973473 2.805942 1.797229

6 3.797187 2.881255 0.973486 3.899300 2.428864

8 3.797200 2.881254 0.973487 5.007404 3.073644

10 3.797282 2.881293 0.973446 6.128029 3.722138

TABLE 4 Comparisons of results for single solitary wave with p = 3, c = 6/5, h = 0.1, Δt = 0.025, 𝜇 = 1, x∈ [0, 100]

Method I1 I2 I3 L2 × 103 L∞ × 103

Our method 3.797282 2.881293 0..973446 6.128029 3.722138

Petrov–Galerkin [23] 3.79713 2.88123 0.972243 7.76745 4.70875

Septic collocation first scheme [25] 3.797185 2.881252 0.973145 8.972983 5.175982

Septic collocation second scheme [25] 3.797133 2.881089 0.973128 7.778169 4.441873

Cubic Galerkin [26] 3.801670 2.888066 0.979294 13.291080 8.478107

I3 = 1.414214. Values of the three invariants as well as L2 and L∞-error norms from our method have
been computed and tabulated in Table 1. Referring to Table 1 the error norms L2 and L∞ remain less
than 2.4154685× 10−3 and 1.07968675× 10−3, the invariants I1, I2 and I3 change from their initial
values by less than 3.10× 10−4, 4.89× 10−4

, and 4.79× 10−4, respectively, throughout the simulation.
Also, our invariants are almost stable as time increases and the agreement between numerical and
analytic solutions is perfect. Hence our method is acceptedly conservative. Comparisons with our
results with exact solution as well as the obtained values in [23, 25, 26, 30, 31] have been made and
listed in Table 2 at t = 10. This table evidentially indicates that the error norms got by our method
are marginally less than the others. The motion of solitary wave using our scheme is plotted at time
t = 0, 5, 10 in Figure 1. It is obvious from the figure that the suggested method performs the motion of
propagation of a solitary wave admissibly, which moved to the right with the preserved amplitude and
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FIGURE 3 Motion of single solitary wave for p = 3, c = 6/5, h = 0.1, Δt = 0.025 over the interval [0, 100] at t = 0, 5, 10

FIGURE 4 Error graph for p = 3, c = 6/5, h = 0.1, Δt = 0.025 at t = 10

shape. Initially, the amplitude of solitary wave is 1.00000 and its top position is pinpionted at x = 40.
At t = 10, its amplitude is recorded as 0.99928 with center x = 60. Thereby the absolute difference in
amplitudes over the time interval [0, 10] are observed as 7.16× 10−3. The quantile of error at discount
times are depicted in Figure 2. The error aberration varies from −1× 10−3 to 1× 10−3.

For the second set, we select the parameters p = 3, c = 6/5, h = 0.1, Δt = 0.025, 𝜇 = 1, x0 = 40
with interval [0, 100] to coincide with that of previous papers [23, 25, 26]. These parameters produce
the amplitude 1.0 and the computations are carried out for times up to t = 10. The error norms L2,
L∞ and conservation quantities I1, I2, and I3 are computed, which are recorded in Table 3. Accord-
ing to Table 3 the error norms L2 and L∞ remain less than 6.12802937× 10−3 and 3.72213891× 10−3,
the invariants I1, I2, and I3 change from their initial values by less than 9.75× 10−5, 4.32× 10−5,
and 4.78× 10−4, respectively, during the simulation. Also, our invariants are almost constant as time
increases. Therefore our method is satisfactorily conservative. In Table 4 the performance of the our
new method is compared with other methods [23, 25, 26] at t = 10. It is observed that errors of the
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TABLE 5 Invariants and errors for single solitary wave with p = 4, c = 4/3, h = 0.1, Δt = 0.01, 𝜇 = 1, x∈ [0, 100]

Time I1 I2 I3 L2 × 103 L∞ × 103

0 3.468709 2.671691 0.729204 0.000000 0.000000

2 3.468718 2.671714 0..729969 0.967786 0.708600

4 3.468719 2.671714 0.730017 1.040242 0.591250

6 3.468720 2.671714 0.730027 1.102854 0.611363

8 3.468731 2.671714 0.730028 1.183442 0.715175

10 3.468799 2.671742 0.730001 1.283420 0.821650

TABLE 6 Comparisons of results for single solitary wave with p = 4, c = 4/3, h = 0.1, Δt = 0.01, 𝜇 = 1, x∈ [0, 100]

Method I1 I2 I3 L2 × 103 L∞ × 103

Our method 3.468799 2.671742 0..730001 1.283420 0.821650

Petrov–Galerkin [23] 3.46866 2.67168 0.728881 2.46065 1.56620

Septic collocation first scheme [25] 3.468709 2.671696 0.729258 3.351740 2.049733

Septic collocation second scheme [25] 3.468671 2.671658 0.729237 2.698709 1.656002

Cubic Galerkin [26] 3.470439 2.674445 0.731987 1.511394 0.857585

FIGURE 5 Motion of single solitary wave for p = 4, c = 4/3, h = 0.1, Δt = 0.01 over the interval [0, 100] at t = 0, 5, 10

method [23, 25, 26] are considerably larger than those obtained with the present scheme. Perspec-
tive views of the traveling solitons are graphed at time t = 0, 5, 10 in Figure 3. It is clear from the
figure that the single soliton moved to the right with the preserved amplitude and shape. The ampli-
tude is 1.00000 at t = 0 and located at x = 40, while it is 0.99958 at t = 10 and located at x = 62.
The absolute difference in amplitudes over the time interval [0, 10] are found as 4.2× 10−4. The aber-
ration of error at discrete times is modeled in Figure 4. The error deviation varies from −4× 10−3

to 4× 10−3.
Finally, we choose the parameters p = 4, c = 4/3, h = 0.1, Δt = 0.01, 𝜇 = 1, x0 =40 over the

region [0, 100] to compare with those of earlier papers [23, 25, 26]. These parameters lead to amplitude
1.0 and the simulations are executed to time t = 10 to invent the error norms L2 and L∞ and the
numerical invariants I1, I2 and I3. For these values of the parameters, the conservation properties and
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FIGURE 6 Error graph for p = 4, c = 4/3, h = 0.1, Δt = 0.01 at t = 10

TABLE 7 Invariants for interaction of two solitary waves with p = 3

t 0 2 4 6

I1 Our method 9.690777 9.690777 9.690777 9.690777

[23] 9.69075 9.69074 9.69074 9.69074

[25] First 9.690777 9.690777 9.690777 9.690778

[25] Second 9.690777 9.688117 9.686015 9.683462

[26] 9.6907 9.6906 9.6898 9.6901

I2 Our method 12.944360 12.928161 12.957476 12.988509

[23] 12.9444 12.9452 12.9453 12.9454

[25] First 12.944391 12.944392 12.944393 12.944394

[25] Second 12.944391 12.939062 12.970312 13.002753

[26] 12.9443 12.9440 12.9418 12.9426

I3 Our method 17.018706 17.034905 17.005590 16.974557

[23] 17.0184 16.9835 16.9261 16.9113

[25] First 17.018675 17.02567 16.981696 16.952024

[25] Second 17.018675 17.02400 16.992754 16.960313

[26] 17.0187 17.0324 16.9849 16.9557

the L2-error as well as the L∞-error norms have been given in Table 5 for various values of the time
level t. It can be noted from Table 5 the error norms L2 and L∞ remain less than 1.28342020× 10−3 and
0.82165081× 10−3, the invariants I1, I2 and I3 change from their initial values by less than 9.02× 10−5,
5.08× 10−5, and 7.97× 10−4, respectively, throughout the simulation. Also, our invariants are almost
constant as time increases. Therefore we can say our method is sensibly conservative. The comparison
between the results obtained by the present method with those in the other studies [23, 25, 26] is
also documented in Table 6. It is noticeably seen from the table that errors of the present method are
radically less than those obtained with the earlier schemes [23, 25, 26]. For visual representation, the
simulations of single soliton for values p = 4, c = 4/3, h = 0.1, Δt = 0.01 at times t = 0, 5 and 10
are illustrated in Figure 5. It is understood from this figure that the numerical scheme performs the
motion of propagation of a single solitary wave, which moves to the right at nearly unchanged speed
and conserves its amplitude and shape with increasing time. The amplitude is 1.00000 at t = 0 and
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(a) (b)

(c) (d)

FIGURE 7 Interaction of two solitary waves at p = 3; (a) t = 0, (b) t = 3, (c) t = 5, (d) t = 6

located at x = 40, while it is 0.99892 at t = 10 and located at x = 63.3. The absolute difference in
amplitudes at times t = 0 and t = 10 is 1.08× 10−3 so that there is a little change between amplitudes.
Error distributions at time t = 10 are shown graphically in Figure 6. As it is seen, the maximum errors
are between −6× 10−4 and 1× 10−3 and occur around the central position of the solitary wave.

6.2 Interaction of two solitary waves

As a second problem, we have focused on the behavior of the interaction of two solitary waves having
different amplitudes and moving in the same direction. We provide for the GRLW equation with initial
conditions given by the linear sum of two well separated solitary waves of various amplitudes

u(x, 0) =
2∑

j=1

p

√
cj(p + 2)

2p
sec h2

[
p
2

√ cj

𝜇(cj + 1)
(x − xj)

]
, (37)

where cj and xj, j = 1, 2 are arbitrary constants. For the simulation, we firstly choose p = 3, c1 = 48/5,
c2 = 6/5, h = 0.1, Δt = 0.01, 𝜇 = 1 over the interval 0≤ x≤ 120. The amplitudes are in the ratio 2 : 1.
Calculations are performed to time t = 6. The results are listed in Table 7. Referring to this table, it is
noticed that the numerical values of the invariants are very closed with the methods [23, 25, 26] during
the computer run. The initial function was placed with the larger wave to the left of the smaller one
as seen in Figure 7a. Both waves move to the right with velocities dependent upon their magnitudes.
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TABLE 8 Invariants for interaction of two solitary waves with p = 4

t 0 2 4 6

I1 Our method 8.834272 8.834272 8.834272 8.834272

[23] 8.83427 8.84204 8.84209 8.83434

[25] First 8.834272 8.834160 8.834053 8.8339467

[25] Second 8.834272 8.564186 8.435464 8.327161

[26] 8.8342 8.7089 8.6518 8.6134

I2 Our method 12.170706 11.339311 11.209384 15.812521

[23] 12.1697 12.3700 12.5703 12.6103

[25] First 12.170887 12.170537 12.170205 12.169873

[25] Second 12.170887 11.939598 11.977097 11.814722

[26] 12.1707 11.7871 11.6179 11.4992

I3 Our method 14.029604 14.860999 14.990927 10.387789

[23] 14.0302 13.9607 13.9805 14.6974

[25] First 14.029423 14.413442 14.351624 14.292901

[25] Second 14.029423 14.260712 14.223214 14.385588

[26] 14.0296 12.9204 12.1972 11.9640

According to Figure 7, the larger wave catches up with the smaller wave at about t = 3, the overlapping
process continues until t = 4, then two solitary waves emerge from the interaction and resume their
former shapes and amplitudes. At t = 6, the magnitude of the smaller wave is 1.00029 on reaching
position x = 60.0, and of the larger wave 1.99213 having the position x = 85.3, so that the difference
in amplitudes is 0.00029 for the smaller wave and 0.00787 for the larger wave. The changes of the
invariants for this case are satisfactorily small. Second, to ensure an interaction of two solitary waves
take place, calculation is carried out with the parameters p= 4, c1 = 64/3, c2 = 4/3, h= 0.125,Δt= 0.01,
𝜇 = 1 over the interval 0≤ x≤ 200. The parameters give solitary waves of different amplitudes 2 and 1
having centers at x1 = 20 and x2 = 80. The results are given in Table 8. According to the this table, it is
realized that the numerical values of the invariants are very closed with the methods [23, 25, 26] during
the computer run. The initial function was placed with the larger wave to the left of the smaller one
as seen in Figure 8a. Both waves move to the right with velocities dependent upon their magnitudes.
According to Figure 8, the larger wave catches up with the smaller wave at about t = 3, the overlapping
process continues until t = 5, then two solitary waves emerge from the interaction and resume their
former shapes and amplitudes.

6.3 The Maxwellian initial condition

Finally, we have examined the evolution of an initial Maxwellian pulse into solitary waves, arising as
initial condition

u(x, 0) = exp(−(x − 40)2). (38)

For this problem, the behavior of the solution depends on the value of 𝜇 [13, 23]. Therefore, we chose
the values of 𝜇 = 0.1, 𝜇 = 0.05, and 𝜇 = 0.025 for p = 2, 3, 4. The numerical computations are done
up to t = 0.05. Calculated numerical invariants at different values of t are shown in Table 9 and it
is seen that calculated invariant values are satisfactorily constant. For p = 2 and 𝜇 = 0.1; the varia-
tion of invariants I1, I2, and I3 from initial variants changes less than 1.02× 10−3, 4.48× 10−3

, and
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(a) (b)

(c) (d)

FIGURE 8 Interaction of two solitary waves at p = 4; (a) t = 0, (b) t = 2, (c) t = 4, (d) t = 6

8.69× 10−3%, respectively, and for 𝜇 = 0.05; 2.01× 10−3, 8.35× 10−3, and 17.92× 10−3%, respec-
tively, and for 𝜇 = 0.025; 3.19× 10−3, 12.72× 10−3, and 29.28× 10−3%, respectively, for p = 3 and
𝜇 = 0.1; the variation of invariants I1, I2 and I3 from initial variants changes less than 8.60× 10−3,
2.77× 10−2, and 4.75× 10−1%, respectively, and for 𝜇 = 0.05; 17.45× 10−3, 54.32× 10−3, and
6.62× 10−1%, respectively, and for 𝜇 = 0.025; 30.92× 10−3, 93.27× 10−3, and 7.72× 10−1%, respec-
tively, for p = 4 and 𝜇 = 0.1; the variation of invariants I1, I2, and I3 from initial variants changes less
than 38.82× 10−3, 1.09× 10−3 and 1.76%, respectively, and for 𝜇 = 0.05; 67.23× 10−3, 1.99× 10−1

and 2.48%, respectively, and for 𝜇 = 0.025; 1.04× 10−1, 3.31× 10−1
, and 3.0%, respectively. The

development of the Maxwellian initial condition into solitary waves is shown in Figure 9.

7 CONCLUSION

In this work, a numerical technique based on a Petrov–Galerkin method using quadratic weight func-
tions and cubic B-spline finite elements has been proffered to get numerical solutions of GRLW
equation. We experimented our algorithm along with single solitary wave in which the exact solution
is known and broadened it to examine the interaction of two solitary waves and Maxwellian initial
condition where the exact solutions are unknown during the interaction. Variational formulation and
semi-discrete Galerkin scheme of the equation are generated. Stability analysis have been done and the
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TABLE 9 Maxwellian initial condition for different values of 𝜇

p = 2 p = 3 p = 4

𝝁 t I1 I2 I3 I1 I2 I3 I1 I2 I3

0.1 0.01 1.772481 1.378659 0.760911 1.772481 1.378655 0.760779 1.772422 1.378551 0.760310

0.03 1.772475 1.378639 0.760890 1.772435 1.378538 0.759621 1.772189 1.378049 0.755954

0.05 1.772463 1.378599 0.760847 1.772328 1.378278 0.757292 1.771793 1.377149 0.747477

0.05 0.01 1.772480 1.315994 0.823572 1.772480 1.315988 0.823384 1.772382 1.315812 0.822659

0.03 1.772469 1.315959 0.823526 1.772388 1.315772 0.821657 1.771994 1.314976 0.816132

0.05 1.772445 1.315887 0.823429 1.772171 1.315282 0.818116 1.71289 1.313372 0.803134

0.025 0.01 1.772480 1.284661 0.854901 1.772478 1.284651 0.854699 1.772340 1.284399 0.853806

0.03 1.772462 1.284610 0.854823 1.772317 1.284299 0.852665 1.771760 1.283154 0.846013

0.05 1.772424 1.284502 0.854658 1.771933 1.283467 0.848301 1.770623 1.280410 0.829240

(a) (b) (c)

FIGURE 9 Maxwellian initial condition at t = 0.05 (a) p = 2, 𝜇 = 0.025, (b) p = 3, 𝜇 = 0.025, (c) p = 4, 𝜇 = 0.025

linearized numerical scheme have been obtained unconditionally stable. The accuracy of the method is
investigated both L2 and L∞ error norms and the invariant quantities I1, I2 and I3. The obtained numeri-
cal results indicate that the error norms are satisfactorily small and the conservation laws are marginally
constant in all computer program run. We can see that our numerical scheme for the equation is more
accurate than the other earlier schemes found in the literature. Therefore, our numerical technique is
suitable for getting numerical solutions of partial differential equations.
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