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a b s t r a c t 

In this article, firstly numerical solutions of the generalized equal width (GEW) equation 

have been obtained by a Petrov-Galerkin finite element method using cubic B-spline base 

functions as element shape functions and quadratic B-spline base functions as the weight 

functions. In order to prove the practicability and robustness of the numerical algorithm, 

the error norms L 2 , L ∞ 

and three invariants I 1 , I 2 and I 3 are computed. A linear stability 

analysis based on a Fourier method states that the numerical scheme is unconditionally 

stable. Secondly, we have proposed the modified extended tanh-function method with the 

Riccati differential equation, which is a convenient and an effective method, for getting 

the exact traveling wave solutions of the equation. Motion of single solitary wave is ex- 

amined using the present methods. The obtained results are indicated both in tabular and 

graphical form. 
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1. Introduction 

Nonlinear wave phenomena appear in many fields, such as fluid mechanics, plasma physics, applied mathematics, in

engineering problems, biology, hydrodynamics, solid state physics and optical fibers. In order to better understand these

nonlinear phenomena, it is important to explore their exact solutions. The tanh-function method ensures an effective and

direct algebraic method for solving nonlinear equations. Based on the localized nature of soliton solutions, the tanh-function

method overcomes the complex integration process to get explicit solutions to various types of nonlinear equations. The

standard tanh method is improved by Malfiet [1] . In recent years, there was interest in obtaining exact solutions of nonlin-

ear partial differential equation (PDE) by the extended tanh method. Wazwaz examined exact solutions of nonlinear partial

differential equation by the extended tanh method [2–4] . Fan and Hon [5] submitted a generalized tanh method for con-

structing the exact solutions of nonlinear partial differential equation, such as, the (2+1)-dimensional sine-Gordon equation

and the double sine-Gordon equation. In particular, the modified extended tanh-function method [6,7] is widely identified

as one of the most powerful tools used recently in a favor of searching for explicit solitary travelling wave solutions PDE’s.

But exact solutions of PDE’s are commonly not derivable, particularly when the nonlinear terms are contained. In so far
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as only limited classes of these equations are solved by analytical means, numerical solutions of these nonlinear partial

differential equations are very operable to examine physical phenomena. The regularized long wave (RLW) equation, 

U t + U x + εUU x − μU xxt = 0 , (1) 

is modelled to manage a broad number of physical developments for instance the nonlinear transverse waves in shallow

water, ion-acoustic waves in plasma, hydromagnetic wave in cold plasma, plasma, elastic media, optical fibres, acoustic-

gravity waves in compressible fluids, pressure waves in liquid–gas bubbles and acoustic waves inharmonic crystals. It was

first alleged as a model for small-amplitude long-waves on the surface of water in a channel by Peregrine [8,9] . Benjamin

et al. [10] presented the RLW equation as a logical alternative model to the more common 

U t + U x + aUU x − bU xxt = 0 , (2) 

Korteweg-de Vries (KdV) equation. The KdV equation plays an important role in describing motions of long waves in shallow

water under gravity, one-dimensional nonlinear lattice, fluid mechanics, quantum mechanics, plasma physics and nonlinear

optics. Morrison et al. [11] have proposed an equally valid alternative, the following equal width (EW) equation 

U t + εUU x − μU xxt = 0 , (3) 

both as a model partial differential equation for the simulation of one-dimensional wave propagation in nonlinear media

with dispersion processes and as an alternative model of nonlinear dispersive waves to the well known the RLW and KdV

equations. The solutions of this equation are types of solitary waves called as solitons whose forms are not changed after

the collision. The GEW equation considered here has the following normalized form 

U t + εU 

p U x − δU xxt = 0 , (4) 

where p is a positive integer, ε and δ positive parameters, t is time and x is the space coordinate, U ( x, t ) is the wave

amplitude. Physical boundary conditions require U → 0 as | x | → ∞ . For this study, boundary and initial conditions are

taken 

U(a, t) = 0 , U(b, t) = 0 , 

U x (a, t) = 0 , U x (b, t) = 0 , 

U xx (a, t) = 0 , U xx (b, t) = 0 , 

U(x, 0) = f (x ) , a ≤ x ≤ b, (5) 

where f ( x ) is a localized disturbance inside the considered interval and will be determined later. In the fluid problems

as known, the quantity U defines the wave amplitude of the water surface or a similar physical quantity. In the plasma

implementations, U is the negative of the electrostatic potential. That’s why, the solitary wave solution of Eq. (4) helps us to

better understand the many physical phenomena with weak nonlinearity and dispersion waves such as nonlinear transverse

waves in shallow water, ion-acoustic and magneto- hydrodynamic waves in plasma and phonon packets in nonlinear crystals

[12] . The GEW equation which we tackle here is based on the EW equation and depend on the both generalized regularized

long wave (GRLW) equation [13,14] and the generalized Korteweg-de Vries (GKdV) equation [15] . These general equations

are nonlinear wave equations with (p + 1) th nonlinearity and have solitary wave solutions, which are pulse-like.The study

of GEW equation provides the opportunity of investigating the creation of secondary solitary waves and/or radiation to

get insight into the corresponding processes of particle physics [16,17] . This equation has many applications in physical

situations such as unidirectional waves propagating in a water channel, long waves in near-shore zones, and many others

[18] . If we take p = 1 in Eq. (4) we get the EW equation and [19–25] and if we take p = 2 , the obtained equation is called as

the modified equal width wave (MEW) equation [26–32] . In the literature, there are limited number of papers on the GEW

equation. Hamdi et al. [33] derived exact solitary wave solutions of the GEW equation. Evans and Raslan [34] considered

the GEW equation by using the collocation method based on quadratic B-splines to obtain the numerical solutions of the

single solitary wave, interaction of solitary waves and birth of solitons. The GEW equation solved numerically by a cubic

B-spline collocation method by Raslan [19] . The homogeneous balance method was used to construct exact travelling wave

solutions of generalized equal width equation by Taghizadeh et al. [35] . The generalized equal width (GEW) equation was

solved numerically by a meshless method based on a global collocation with standard types of radial basis functions (RBFs)

by [18] . Quintic B-spline collocation method with two different linearization techniques and a lumped Galerkin method

based on cubic B-spline functions were employed to obtain the numerical solutions of the GEW equation by Karakoc and

Zeybek, [12,36] respectively. Roshan [37] , implemented Petrov-Galerkin method using the linear hat function and quadratic

B-spline function as test and trial functions respectively for the GEW equation. 

In this study, we have designed a lumped Petrov-Galerkin method and the modified extended tanh function method

with Riccati equation for the GEW equation. The plan of this paper is as follows: In Section 2 , a lumped Petrov-Galerkin

finite element technique has been practiced to GEW equation. Resulting system can be solved with a sort of the Thomas

algorithm. A linear stability analysis of the scheme is examined in Section 3 . In Section 4 , motion of single solitary wave has

been analyzed for the problem with different initial and boundary conditions. The acquired numerical results are given both

in tabular and graphical form and the computed results are also hold a candle to some of those available in the literature. In

Section 5, description of the modified extended tanh function method with the Riccati equation is presented. In Section 6 ,

we apply the proposed modified extended tanh function method to get the exact solutions for GEW equation. Conclusions

are given in Section 7 . 
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2. Analysis of the Petrov-Galerkin method 

Let us consider the solution domain is limited to a finite interval a ≤ x ≤ b . Partition the interval [ a, b ] at points by x m
where a = x 0 < x 1 < . . . < x N = b and let h = 

b−a 
N , m = 0 , 1 , 2 , . . . , N. On this partition, we shall need the following cubic B-

splines φm 

( x ) at the points x m 

, m = 0 , 1 , 2 , . . . , N. Prenter [38] defined following cubic B-spline functions φm 

( x ), ( m = −1(1)

N + 1 ), at the points x m 

which compose a basis over the region [ a, b ] by 

φm 

(x ) = 

1 

h 

3 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

(x − x m −2 ) 
3 , x ∈ [ x m −2 , x m −1 ) , 

h 

3 + 3 h 

2 ( x − x m −1 ) + 3 h ( x − x m −1 ) 
2 − 3( x − x m −1 ) 

3 , x ∈ [ x m −1 , x m 

) , 

h 

3 + 3 h 

2 ( x m +1 − x ) + 3 h ( x m +1 − x ) 2 − 3( x m +1 − x ) 3 , x ∈ [ x m 

, x m +1 ) , 

( x m +2 − x ) 3 , x ∈ [ x m +1 , x m +2 ] , 

0 otherwise. 

(6)

A global approximation U N ( x, t ) is stated in terms of cubic B-splines by 

U N (x, t) = 

N+1 ∑ 

j= −1 

φ j (x ) δ j (t) , (7)

in which parameters δj ( t ) are obtained using boundary and weighted residual conditions. A typical finite interval [ x m 

, x m +1 ]

is converted to more easily operable interval [0,1] with a local coordinate transformation defined by hη = x − x m 

(0 ≤ η ≤ 1).

Thus cubic B-splines (6) depending on variable η can be given as follows: 

φm −1 = (1 − η) 3 , 

φm 

= 1 + 3(1 − η) + 3(1 − η) 2 − 3(1 − η) 3 , 

φm +1 = 1 + 3 η + 3 η2 − 3 η3 , 

φm +2 = η3 . (8)

Cubic B-splines except φm −1 (x ) , φm 

(x ) , φm +1 (x ) , φm +2 (x ) and their four principal derivatives vanish the outside of the region

[0,1]. Hence approximation function (7) in terms of element parameters δm −1 , δm 

, δm +1 , δm +2 and B-spline element functions

φm −1 , φm 

, φm +1 , φm +2 are given over the region [0,1] by 

U N (η, t) = 

m +2 ∑ 

j= m −1 

δ j φ j . (9)

Using equalities (8) and (9) , approximation of nodal values U m 

and its first and second derivatives are obtained as follows: 

U m 

= U(x m 

) = δm −1 + 4 δm 

+ δm +1 , 

U 

′ 
m 

= U 

′ (x m 

) = 3(−δm −1 + δm +1 ) , 

U 

′′ 
m 

= U 

′′ (x m 

) = 6(δm −1 − 2 δm 

+ δm +1 ) . (10)

We take the weight functions �m 

as quadratic B-splines. The quadratic B-splines �m 

at the knots x m 

are defined as [38] : 

�m 

(x ) = 

1 

h 

2 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

(x m +2 − x ) 2 − 3(x m +1 − x ) 2 + 3(x m 

− x ) 2 , x ∈ [ x m −1 , x m 

) , 

(x m +2 − x ) 2 − 3(x m +1 − x ) 2 , x ∈ [ x m 

, x m +1 ) , 

(x m +2 − x ) 2 , x ∈ [ x m +1 , x m +2 ) , 

0 otherwise. 

(11)

Using the local coordinate transformation for the finite element [ x m 

, x m +1 ] by hη = x − x m 

(0 ≤ η ≤ 1) quadratic B-splines

�m 

are given as 

�m −1 = (1 − η) 2 , 

�m 

= 1 + 2 η − 2 η2 , 

�m +1 = η2 . (12)

Performing the Petrov-Galerkin method to Eq. (4) , the weak form of Eq. (4) is attained as ∫ b 

a 

�(U t + εU 

p U x − μU xxt ) dx = 0 . (13)

For a unique element [ x m 

, x m +1 ] using transformation hη = x − x m 

(0 ≤ η ≤ 1) into Eq. (13) , we obtain the following integral

equation: ∫ 1 

�
(

U t + 

ε 

h 

ˆ U 

p U η − μ

h 

2 
U ηηt 

)
dη = 0 , (14)
0 
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where ˆ U is approved to be constant over an element to facilitate the integral. Integrating Eq. (14) by parts and using

Eq. (4) which yields: ∫ 1 

0 

[�(U t + λU η) + β�ηU ηt ] dη = β�U ηt | 1 0 , (15) 

where λ = 

ε ̂ U p 

h 
and β = 

μ
h 2 

. Assuming the weight function �i with quadratic B-spline shape functions given by Eq. (11) and

substituting approximation (9) into integral Eq. (15) , we get the element contributions in the form: 

m +2 ∑ 

j= m −1 

[(∫ 1 

0 

�i φ j + β�′ 
i φ

′ 
j 

)
dη − β�i φ

′ 
j | 1 0 

]
˙ δe 
j + 

m +2 ∑ 

j= m −1 

(
λ

∫ 1 

0 

�i φ
′ 
j dη

)
δe 

j = 0 , (16) 

where δe = (δm −1 , δm 

, δm +1 , δm +2 ) 
T are the element parameters and dot states differentiation to t which can be written in

matrix form as follows: 

[ A 

e + β(B 

e − C e )] ̇ δe + λD 

e δe = 0 . (17) 

The element matrices A 

e 
i j 
, B e 

i j 
, C e 

i j 
and D 

e 
i j 

are rectangular 3 × 4 given by the following integrals; 

A 

e 
i j = 

∫ 1 

0 

�i φ j dη = 

1 

60 

⎡ 

⎣ 

10 71 38 1 

19 221 221 19 

1 38 71 10 

⎤ 

⎦ , 

B 

e 
i j = 

∫ 1 

0 

�′ 
i φ

′ 
j dη = 

1 

2 

⎡ 

⎣ 

3 5 −7 −1 

−2 2 2 −2 

−1 −7 5 3 

⎤ 

⎦ , 

C e i j = �i φ
′ 
j | 1 0 = 3 

⎡ 

⎣ 

1 0 −1 0 

1 −1 −1 1 

0 −1 0 1 

⎤ 

⎦ , 

D 

e 
i j = 

∫ 1 

0 

�i φ
′ 
j dη = 

1 

10 

⎡ 

⎣ 

−6 −7 12 1 

−13 −41 41 13 

−1 −12 7 6 

⎤ 

⎦ , 

where i takes the values m − 1 , m, m + 1 and the j takes the values m − 1 , m, m + 1 , m + 2 for the typical element [ x m 

, x m +1 ] .

A lumped value for U is got from ( 
U m + U m +1 

2 

p 
) as 

λ = 

ε 

2 

p h 

( δm −1 + 5 δm 

+ 5 δm +1 + δm +2 ) 
p . 

Assembling all contributions coming from all the elements, matrix Eq. (17) yields the following system 

[ A + β(B − C)] ̇ δ + λDδ = 0 , (18) 

where δ = (δ−1 , δ0 , . . . , δN , δN+1 ) 
T are global element parameters. A, B, C and λD are global matrices and each generalized

m th row of the global matrices is as follows: 

A = 

1 

60 

( 1 , 57 , 302 , 302 , 57 , 1 , 0 ) , B = 

1 

2 

(−1 , −9 , 10 , 10 , −9 , −1 , 0) , 

C = (0 , 0 , 0 , 0 , 0 , 0 , 0) 

λD = 

1 

10 

(
−λ1 , −12 λ1 − 13 λ2 , 7 λ1 − 41 λ2 − 6 λ3 , 6 λ1 + 41 λ2 − 7 λ3 , 

13 λ2 + 12 λ3 , λ3 , 0 

)
where 

λ1 = 

ε 

2 

p h 

( δm −2 + 5 δm −1 + 5 δm 

+ δm +1 ) 
p 
, λ2 = 

ε 

2 

p h 

( δm −1 + 5 δm 

+ 5 δm +1 + δm +2 ) 
p 
, 

λ3 = 

ε 

2 

p h 

( δm 

+ 5 δm +1 + 5 δm +2 + δm +3 ) 
p 
. 

Replacing the time derivative ˙ δ by the forward difference approximation 

˙ δ = 

δn +1 −δn 

	t 
and the parameter δ by the Crank-

Nicolson formulation δ = 

1 
2 (δ

n + δn +1 ) , then Eq. (17) reduce to the following matrix system: [
A + β(B − C) + 

λ	t 

2 

D 

]
δn +1 = 

[
A + β(B − C) − λ	t 

2 

D 

]
δn , (19) 
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where t is time step. Practicing the boundary conditions (5) to the (19) , (N + 1) × (N + 1) matrix system is obtained. This

result system is efficiently solved with a variant of the Thomas algorithm but in solution process, two or three inner it-

erations δn ∗ = δn + 

1 
2 (δ

n − δn −1 ) are also implemented at each time step to improve the accuracy. Consequently, a typical

member of the matrix system (19) may be written in terms of the nodal parameters system repetition connection between

time steps δn and δn +1 as: 

γ1 δ
n +1 
m −2 + γ2 δ

n +1 
m −1 + γ3 δ

n +1 
m 

+ γ4 δ
n +1 
m +1 + γ5 δ

n +1 
m +2 + γ6 δ

n +1 
m +3 

= γ6 δ
n 
m −2 + γ5 δ

n 
m −1 + γ4 δ

n 
m 

+ γ3 δ
n 
m +1 + γ2 δ

n 
m +2 + γ1 δ

n 
m +3 , (20)

where 

γ1 = 

1 

60 

− β

2 

− λ	t 

20 

, γ2 = 

57 

60 

− 9 β

2 

− 25 λ	t 

20 

, γ3 = 

302 

60 

+ 

10 β

2 

− 40 λ	t 

20 

, 

γ4 = 

302 

60 

+ 

10 β

2 

+ 

40 λ	t 

20 

, γ5 = 

57 

60 

− 9 β

2 

+ 

25 λ	t 

20 

, γ6 = 

1 

60 

− β

2 

+ 

λ	t 

20 

. 

To begin the iteration, the initial vector δ0 is calculated by using the initial and boundary conditions. So, using the relations

at the knots U N (x m 

, 0) = U(x m 

, 0) , m = 0 , 1 , 2 , . . . , N and U 

′ 
N (x 0 , 0) = U 

′ 
(x N , 0) = 0 associated with a variant of the Thomas

algorithm, the initial vector δ0 is easily found from the following matrix form ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−3 0 3 

1 4 1 

. . . 

1 4 1 

−3 0 3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

δ0 
−1 

δ0 
0 

. . . 

δ0 
N 

δ0 
N+1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

U 

′ (x 0 , 0) 

U(x 0 , 0) 

. . . 

U(x N , 0) 

U 

′ (x N , 0) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

3. Stability analysis of the numerical method 

Stability of the presented technique is explored by practicing Fourier method based on Von-Neumann theory. Presuming

 

p = λ in the nonlinear term U 

p U x of GEW Eq. (4) is locally constant. Substituting the Fourier mode δn 
j 

= g n e i jkh (i = 

√ −1 )

where k is mode number and h is element greatness, into scheme (20) , which generates the growth factor 

g = 

a − ib 

a + ib 
, (21)

where 

a = ( 302 + 300 β) cos 

(
θ

2 

)
h + ( 57 − 270 β) cos 

(
3 θ

2 

)
h + ( 1 − 30 β) cos 

(
5 θ

2 

)
h, 

b = 120 λ	t sin 

(
θ

2 

)
h + 75 λ	t sin 

(
3 θ

2 

)
h + 3 λ	t sin 

(
5 θ

2 

)
h. (22)

The modulus of | g | is 1, so the linearized scheme is unconditionally stable. 

4. Numerical results and discussion 

In this part, in order to verify of our numerical algorithm, we take into consideration some experiments involving: Dis-

persion of single solitary waves, interaction of two solitary waves and the Maxwellian initial condition are investigated.

For these three problems, to demonstrate how suitable our numerical algorithm foresees the position and amplitude of the

solution as the simulation progresses, we handle the following error norms: 

L 2 = 

∥∥U 

exact − U N 

∥∥
2 

	 

√ 

h 

N ∑ 

J=0 

∣∣U 

exact 
j 

− ( U N ) j 
∣∣2 

, 

and 

L ∞ 

= 

∥∥U 

exact − U N 

∥∥
∞ 

	 max 
j 

∣∣U 

exact 
j − ( U N ) j 

∣∣. 
The exact solution of the GEW equation is found to be [34,36] 

U(x , t) = 

p 

√ 

c(p + 1)(p + 2) 

2 ε 
sec h 

2 

[
p 

2 

√ 

μ
(x − ct − x 0 ) 

]
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Table 1 

Invariants and errors for single solitary wave with p = 2 , c = 0 . 5 ,h = 0 . 1 , ε = 3 , 

	t = 0 . 2 , μ = 1 , x ∈ [0, 80]. 

Time I 1 I 2 I 3 L 2 L ∞ 

0 3.1415863 2.6666583 1.3333283 0.00000000 0.00000000 

5 3.1415911 2.6666744 1.3333406 0.00395938 0.00295270 

10 3.1415916 2.6666753 1.3333413 0.00705757 0.00474584 

15 3.1415916 2.6666753 1.3333413 0.00997382 0.00652868 

20 3.1415916 2.6666753 1.3333413 0.01288981 0.00832796 

Table 2 

Comparisons of results for single solitary wave with p = 2 , c = 0 . 5 ,h = 0 . 1 , ε = 3 , 	t = 0 . 2 , μ = 1 , x ∈ [0, 80] at t = 20 . 

Method I 1 I 2 I 3 L 2 L ∞ 

Analytic 3.1415927 2.6666667 1.3333333 0.00000000 0.00000000 

Our Method 3.1415916 2.6666753 1.3333413 0.01288981 0.00832796 

Cubic Galerkin [12] 3.1589605 2.6902580 1.3570299 0.03803037 0.02629007 

Quintic Collocation First Scheme [36] 3.1250343 2.6445829 1.3113394 0.05132106 0.03416753 

Quintic Collocation Second Scheme [36] 3.1416722 2.6669051 1.3335718 0.01675092 0.01026391 

Petrov-Galerkin [37] 3.14159 2.66673 1.33341 0.0123326 0.0086082 

Fig. 1. Motion of single solitary wave for p = 2 , c = 0 . 5 , h = 0 . 1 , 	t = 0 . 2 , ε = 3 , μ = 1 , over the interval [0, 80] at t = 0 , 10 , 20 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where c is the speed of the wave traveling in the positive direction of the x -axis and x 0 is arbitrary constant. There are three

conserved quantities for the GEW equation. These are correspond to mass, momentum and energy given by 

I 1 = 

∫ b 

a 

U(x, t) dx, I 2 = 

∫ b 

a 

[ U 

2 (x, t) + μU 

2 
x (x, t) ] dx, I 3 = 

∫ b 

a 

U 

p+2 (x, t) dx (23)

respectively. 

4.1. Dispersion of a single solitary wave 

For the first set, we choose the parameters p = 2 , c = 0 . 5 , h = 0 . 1 , 	t = 0 . 2 , μ = 1 , ε = 3 , x 0 = 30 with interval [0,80]

to match up with that of previous papers [12,36,37] . Hence the solitary wave has amplitude 1.0 and the program is run

up to time t = 20 over the solution domain. Analytical values of the invariants are I 1 = 3 . 1415927 , I 2 = 2 . 6 6 6 6 6 67 and

I 3 = 1 . 3333333 . Values of the three invariants as well as L 2 and L ∞ 

-error norms from our method have been computed and

listed in Table 1 . Referring to Table 1 , the error norms L 2 and L ∞ 

remain less than 1 . 288981 × 10 −2 and 8 . 32796 × 10 −3 , the

invariants I 1 , I 2 and I 3 change from their initial values by less than 5 . 3 × 10 −6 , 1 . 7 × 10 −5 and 1 . 3 × 10 −5 , respectively,

throughout the simulation. Also, our invariants are almost constant as time increases and the changes of the invariants

agree with their exact values. So we can say our method is sensibly conservative. Comparisons with our results with exact

solution as well as the recorded values in [12,36,37] have been made and tabulated in Table 2 at t = 20 . This table clearly

shows that the error norms got by our method are marginally less than the others. The motion of solitary wave using our

scheme is plotted at time t = 0 , 10 , 20 in Fig. 1 . As seen, single solitons move to the right at a constant speed and preserves

its amplitude and shape with increasing time as anticipated. Initially, the amplitude of solitary wave is 1.0 0 0 0 0 and its

top position is pinpionted at x = 30 . At t = 20 , its amplitude is noted as 0.999416 with center x = 40 . Thereby the absolute

difference in amplitudes over the time interval [0,20] are observed as 5 . 84 × 10 −4 . The quantile of error at discount times

are depicted in Fig. 2 . The error aberration varies from −8 × 10 −2 to 1 × 10 −2 . 
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Fig. 2. Error graph for p = 2 , c = 0 . 5 , h = 0 . 1 , ε = 3 , 	t = 0 . 2 , μ = 1 , x ∈ [0, 80] at t = 20 . 

Table 3 

Invariants and errors for single solitary wave with p = 3 , c = 0 . 3 ,h = 0 . 1 , 	t = 0 . 2 , 

ε = 3 , μ = 1 , x ∈ [0, 80]. 

Time I 1 I 2 I 3 L 2 L ∞ 

0 2.8043580 2.4639009 0.9855618 0.000000 0.000000 

5 2.8043722 2.4639383 0.9855940 0.00184591 0.00179091 

10 2.8043742 2.4639418 0.9855971 0.00294802 0.00235427 

15 2.8043743 2.4639419 0.9855971 0.00376675 0.00288459 

20 2.8043743 2.4639418 0.9855971 0.00454007 0.00341543 

Table 4 

Comparisons of results for single solitary wave with p = 3 , c = 0 . 3 ,h = 0 . 1 , 	t = 0 . 2 , ε = 3 , μ = 1 , x ∈ [0, 80] at t = 20 . 

Method I 1 I 2 I 3 L 2 L ∞ 

Our Method 2.8043743 2.4639418 0.9855971 0.00454007 0.00341543 

Cubic Galerkin [12] 2.8187398 2.4852249 1.0070200 0.01655637 0.01370453 

Quintic Collocation First Scheme [36] 2.8043570 2.4639086 0.9855602 0.00801470 0.00538237 

Quintic Collocation Second Scheme [36] 2.8042943 2.4637495 0.9854011 0.00708553 0.00480470 

Petrov-Galerkin [37] 2.80436 2.46389 0.98556 0.00484271 0.00370926 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the second set, we select the parameters p = 3 , c = 0 . 3 , h = 0 . 1 , 	t = 0 . 2 , ε = 3 , μ = 1 , x 0 = 30 with interval

[0, 80] to coincide with that of previous papers [12,36,37] . Thus the solitary wave has amplitude 1.0 and the computations are

carried out for times up to t = 20 . The error norms L 2 , L ∞ 

and conservation quantities I 1 , I 2 and I 3 are computed, which are

given in the Table 3 ). According to Table 3 the error norms L 2 and L ∞ 

remain less than 5 . 54007 × 10 −3 and 3 . 41543 × 10 −3 ,

the invariants I 1 , I 2 and I 3 change from their initial values by less than 1 . 63 × 10 −5 , 4 . 09 × 10 −5 and 3 . 53 × 10 −5 , re-

spectively, throughout the simulation. Also, our invariants are almost constant as time increases. Therefore we can say our

method is satisfactorily conservative. In Table 4 the performance of the our new method is compared with other methods

[12,36,37] at t = 20 . It is observed that errors of the method [12,36,37] are considerably larger than those obtained with the

present scheme. Fig. 3 shows the solutions at t = 0 , 10 , 20 . It is clear from the figure that the single soliton moved to the

right with the preserved amplitude and shape. The amplitude is 1.0 0 0 0 0 at t = 0 and located at x = 30 , while it is 0.999522

at t = 20 and located at x = 36 . Therefore the absolute difference in amplitudes over the time interval [0,20] are found as

4 . 78 × 10 −4 . The aberration of error at discrete times are designed in Fig. 4 . The error deviation varies from −3 × 10 −3 to

4 × 10 −3 . 

Finally, we have taken the parameters p = 4 , c = 0 . 2 , h = 0 . 1 , 	t = 0 . 2 , ε = 3 , μ = 1 , x 0 = 30 over the region [0,80] to

compare with those of earlier papers [12,36,37] . Thereby, solitary wave has amplitude 1.0 and the simulations are executed

to time t = 20 to invent the error norms L 2 and L ∞ 

and the numerical invariants I 1 , I 2 and I 3 . For these values of the

parameters, the conservation properties and the L 2 -error as well as the L ∞ 

-error norms have been given in Table 5 for

various values of the time level t . It can be noted from Table 5 , the error norms L 2 and L ∞ 

remain less than 2 . 01343 ×
10 −3 and 1 . 41097 × 10 −3 , the invariants I 1 , I 2 and I 3 change from their initial values by less than 4 . 01 × 10 −5 , 9 . 26 × 10 −5

and 8 . 28 × 10 −5 , respectively, throughout the simulation. Also, our invariants are almost constant as time increases and

the changes of the invariants agree with their exact values. Therefore we can say our method is sensibly conservative.

The comparison between the results obtained by the present method with those in the other studies [12,36,37] is also

documented in Table 6 . It is noticeably seen from the table that errors of the present method are radically less than those

obtained with the earlier schemes [12,36,37] . For visual representation, the simulations of single soliton for values p = 4 , c =
0 . 2 , h = 0 . 1 , 	t = 0 . 2 at times t = 0 , 10 and 20 are illustrated in Fig. 5 . It is understood from this gure that the numerical
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Fig. 3. Motion of single solitary wave for p = 3 , c = 0 . 3 , h = 0 . 1 , 	t = 0 . 2 , ε = 3 , μ = 1 , x ∈ [0, 80] at t = 0 , 10 , 20 . 

Fig. 4. Error graph for p = 3 , c = 0 . 3 , h = 0 . 1 , 	t = 0 . 2 , ε = 3 , μ = 1 , x ∈ [0, 80] at t = 20 . 

Table 5 

Invariants and errors for single solitary wave with p = 4 , c = 0 . 2 ,h = 0 . 1 , 	t = 0 . 2 , 

ε = 3 , μ = 1 , x ∈ [0, 80]. 

Time I 1 I 2 I 3 L 2 L ∞ 

0 2.6220516 2.3561722 0.7853952 0.000000 0.000000 

5 2.6220845 2.3562523 0.7854668 0.00126413 0.00143888 

10 2.6220915 2.3562646 0.7854778 0.00181723 0.00151277 

15 2.6220917 2.3562648 0.7854781 0.00197790 0.00145913 

20 2.6220917 2.3562648 0.7854780 0.00201343 0.00141097 

Table 6 

Comparisons of results for single solitary wave with p = 4 , c = 0 . 2 ,h = 0 . 1 , 	t = 0 . 2 , ε = 3 , μ = 1 , x ∈ [0, 100] at 

t = 20 . 

Method I 1 I 2 I 3 L 2 L ∞ 

Our Method 2.6220917 2.3562648 0.7854780 0.00201343 0.00141097 

Cubic Galerkin [12] 2.6327833 2.3730032 0.8023383 0.00890617 0.00821991 

Quintic Collocation First Scheme [36] 2.6220508 2.3561901 0.7853939 0.00421697 0.00297952 

Quintic Collocation First Scheme [36] 2.6219284 2.3559327 0.7851364 0.00339086 0.00247031 

Petrov-Galerkin [37] 2.62206 2.35615 0.78534 0.00230499 0.00188285 

 

 

 

 

 

scheme performs the motion of propagation of a single solitary wave, which moves to the right at nearly unchanged speed

and conserves its amplitude and shape with increasing time. The amplitude is 1.0 0 0 0 0 at t = 0 and located at x = 30 , while

it is 0.999478 at t = 20 and located at x = 34 . The absolute difference in amplitudes at times t = 0 and t = 10 is 5 . 22 × 10 −4

so that there is a little change between amplitudes. Error distributions at time t = 20 are shown graphically in Fig. 6 . As it

is seen, the maximum errors are between −1 . 5 × 10 −3 to 1 . 5 × 10 −3 and occur around the central position of the solitary

wave. 
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Fig. 5. Motion of single solitary wave for p = 4 , c = 0 . 2 , h = 0 . 1 , 	t = 0 . 2 , ε = 3 , μ = 1 , x ∈ [0 , 80] at t = 0 , 10 , 20 . 

Fig. 6. Error graph for p = 4 , c = 0 . 2 , h = 0 . 1 , 	t = 0 . 2 , ε = 3 , μ = 1 at t = 20 . 

Fig. 7. Graph of case (5) for the EW equation. 

Fig. 8. Graph of case (6) for the EW equation. 
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Fig. 9. Graph of case (2) for the MEW equation. 

Fig. 10. Graph of case (3) for the MEW equation. 

Fig. 11. Graph of case (2) for the GEW equation. 

Fig. 12. Graph of case (3) for the GEW equation. 
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5. Description of the modified extended tanh function method with the Riccati equation 

In this section, we use the modified extended tanh function method with the Riccati equation to find the exact solutions

of the GEW equation. To illustrate the basic ideas of the method, consider the following nonlinear PDE with only two

independent variables; 

F ( u, u t , u x , u tt , u xt , u xx . . . ) = 0 . (24)

Applying the transformation 

u ( x, t ) = f (ξ ) , ξ = kx −ct −x 0 , (25)

where k and c are nonzero constants and x 0 is arbitrary constant, converts Eq. (24) into an integer order nonlinear ordinary

differential equations as follows 

H( f, f ′ , f ′′ , f ′′′ , . . . ) = 0 , (26)

where the derivatives are with respect to ξ . It is assumed that the solutions of Eq. (26) are presented as a finite series, say

f ( ξ ) = a 0 + 

N ∑ 

n =1 

(
a n φ

n ( ξ ) + b n φ
−n ( ξ ) 

)
, (27)

where a n , b n , n = 1 , 2 , . . . , N are constants can be computed, and φn ( ξ ) satisfies the Riccati equation 

φ′ = d + φ2 , (28)

where d is a constant, Eq. (28) admits several types of solutions: 

If d < 0 then 

φ = −
√ 

−d tanh 

(√ 

−d ξ
)

or φ = −
√ 

−d coth 

(√ 

−d ξ
)
. 

If d > 0 then 

φ = 

√ 

d tan ( 
√ 

d ξ ) or φ = −
√ 

d cot 

(√ 

d ξ
)
. 

If d = 0 then 

φ = − 1 

ξ
. 

It should be mentioned that the value of N is usually determined by balancing the linear and nonlinear terms of highest

orders in (26) . Substituting Eq. (27) and its necessary derivatives, for example 

f ′ = 

N ∑ 

n =1 

(
a n n φn −1 

(
b + φ2 

)
− b n n φ−n −1 

(
b + φ2 

))
, 

f ′′ = 

N ∑ 

n =1 

(
a n n ( n −1 ) φn −2 

(
b + φ2 

)
2 + 2 na n φn 

(
b + φ2 

)
+ b n n ( n + 1 ) φ−n −2 

(
b + φ2 

)
2 −2 b n nφ−n 

(
b + φ2 

)), 

into (26) gives 

P ( φ( ξ ) ) = 0 , (29)

where P ( φ( ξ )) is a polynomial in φ( ξ ). By equating the coefficient of each power of φ( ξ ) in (29) to zero, a system of

algebraic equations will be obtained whose solution yields the exact solutions of (26) . 

6. Exact solutions of the GEW equation 

Applying the wave transformation (25) , we can reduce (4) to the nonlinear ordinary differential equation as the follow-

ing: 

−c f ′ + εk f p f ′ + μck 2 f ′′′ = 0 . (30)

Integrating (30) once with respect to ξ , yields 

−c f + εk 
1 

p + 1 

f p+1 + μck 2 f ′′ = 0 , (31)

where the integrating constant is considered to be zero. Now we study these cases. 
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6.1. The exact solution of EW (at (p = 1) in GEW) equation 

If we put p = 1 into Eq. (31) we obtain: 

−c f + εk 
1 

2 

f 2 + μck 2 f ′′ = 0 . (32) 

The value of N is usually determined by balancing f ′′ and f 2 in (32) results N + 2 = 2 N and so N = 2 . This offers a truncated

series as the following form: 

f ( ξ ) = a 0 + a 1 φ( ξ ) + b 1 φ
−1 ( ξ ) + a 2 φ

2 ( ξ ) + b 2 φ
−2 ( ξ ) . (33) 

By substituting (33) and its derivatives into (32) and equating the coefficient of each power of φ( ξ ) to zero. We derive a

system of algebraic equations as follows: 

−ca 0 + 

1 

2 

kεa 2 0 + 2 d 2 ck 2 μa 2 + kε a 1 b 1 + 2 ck 2 μb 2 + kε a 2 b 2 = 0 , 

6 d 2 ck 2 μb 2 + 

kε b 2 2 

2 

= 0 , 

2 d 2 ck 2 μb 1 + kεb 1 b 2 = 0 , 

kε b 2 1 

2 

− cb 2 + 8 dck 2 μb 2 + kε a 0 b 2 = 0 , 

−cb 1 + 2 dck 2 μb 1 + kεa 0 b 1 + kεa 1 b 2 = 0 , 

−ca 1 + 2 dck 2 μa 1 + kε a 0 a 1 + kε a 2 b 1 = 0 , 

1 

2 

kε a 2 1 − ca 2 + 8 dck 2 μa 2 + kεa 0 a 2 = 0 , 

2 ck 2 μa 1 + kεa 1 a 2 = 0 , 

6 ck 2 μa 2 + 

1 

2 

εa 2 2 = 0 . 

Solving the above system, yields; 

Case 1. 

a 0 = − c 

k ε 
, b 2 = 0 , b 1 = 0 , a 1 = 0 , a 2 = −12 ckμ

ε 
, d = 

1 

4 k 2 μ
. 

Substituting into (33) and using (25) therefore, the solution of EW equation is formed as: 

u 1 ( x, t ) = − c 

k ε 
− 12 ckμ

ε 

√ 

d tan 

(√ 

d ξ
)
, 

u 2 ( x, t ) = − c 

kε 
+ 

12 ckμ

ε 

√ 

d cot 

(√ 

d ξ
)
, 

where ξ = k x − c t − x 0 . 

Case 2. 

a 0 = − c 

kε 
, b 2 = − 3 c 

4 k 3 ε μ
, a 2 = 0 , b 1 = 0 , a 1 = 0 , d = 

1 

4 k 2 μ
. 

Substituting into (33) and using (25) so, the solution of EW equation is formed as: 

u 3 ( x, t ) = − c 

k ε 
− 3 c 

4 k 3 εμd 
cot 2 

(√ 

d ξ
)
, 

u 4 ( x, t ) = − c 

kε 
− 3 c 

4 k 3 εμd 
tan 

2 
(√ 

d ξ
)
, 

where ξ = k x − c t − x . 
0 
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Case 3. 

a 0 = 

c 

2 kε 
, b 2 = − 3 c 

64 k 3 εμ
, b 1 = 0 , a 1 = 0 , a 2 = −12 ckμ

ε 
, d = 

1 

16 k 2 μ
. 

Substituting into (33) and using (25) hence, the solution of EW equation is formed as: 

u 5 ( x, t ) = 

c 

2 kε 
−12 ckμd 

ε 
tan 

2 
(√ 

d ξ
)

− 3 c 

64 k 3 εμd 
cot 2 

(√ 

d ξ
)
, 

u 6 ( x, t ) = 

c 

2 kε 
−12 ckμd 

ε 
cot 2 

(√ 

d ξ
)
− 3 c 

64 k 3 εμd 
tan 

2 
(√ 

d ξ
)
, 

where ξ = k x − c t − x 0 . 

Case 4. 

a 0 = 

3 c 

2 kε 
, b 2 = − 3 c 

64 k 3 εμ
, a 1 = 0 , a 2 = −12 ckμ

ε 
, d = − 1 

16 k 2 μ
. 

Substituting into (33) and using (25) thereby, the solution of EW equation is formed as: 

u 7 ( x, t ) = 

3 c 

2 kε 
+ 

12 ckμd 

ε 
tan h 

2 
(√ 

−d ξ
)

+ 

3 c 

64 k 3 εμd 
cot h 

2 
(√ 

−d ξ
)
, 

u 8 ( x, t ) = 

3 c 

2 kε 
+ 

12 ckμd 

ε 
cot h 

2 
(√ 

−d ξ
)

+ 

3 c 

64 k 3 εμd 
tan h 

2 
(√ 

−d ξ
)
, 

where ξ = k x − c t − x 0 . 

Case 5. 

a 0 = 

3 c 

kε 
, b 2 = 0 , b 1 = 0 , a 1 = 0 , a 2 = −12 ckμ

ε 
, d = − 1 

4 k 2 μ
. 

Substituting into (33) and using (25) then, the solution of EW equation is formed as: 

u 9 ( x, t ) = 

3 c 

kε 
+ 

12 ckμd 

ε 
tanh 

2 
(√ 

−d ξ
)
, 

u 10 ( x, t ) = 

3 c 

kε 
+ 

12 ckμd 

ε 
cot h 

2 
(√ 

−d ξ
)
, 

where ξ = k x − c t − x 0 . 

Case 6. 

a 0 = 

3 c 

kε 
, b 2 = − 3 c 

4 k 3 εμ
, a 2 = 0 , b 1 = 0 , a 1 = 0 , d = − 1 

4 k 2 μ
. 

Substituting into (33) and using (25) consequently, the solution of EW equation is formed as: 

u 11 ( x, t ) = 

3 c 

kε 
+ 

3 c 

4 k 3 εμd 
coth 

2 
(√ 

−d ξ
)
, 

u 12 ( x, t ) = 

3 c 

kε 
+ 

3 c 

4 k 3 εμd 
tan h 

2 
(√ 

−d ξ
)
, 

where ξ = k x − c t − x 0 . 

6.2. The exact solution of MEW (at (p = 2) in GEW) equation 

If we put p = 2 into Eq. (31) we get: 

−c f + 

1 

3 

εk f 3 + μck 2 f ′′ = 0 . (34)

The value of N is usually determined by balancing f ′′ and f 3 in (34) results N + 2 = 3 N and so N = 1 . This offers a truncated

series as the following form: 

f ( ξ ) = a 0 + a 1 φ( ξ ) + b 1 φ
−1 ( ξ ) . (35)

By substituting (35) and its derivatives into (34) and equating the coefficient of each power of φ( ξ ) to zero. We derive a

system of algebraic equations as follows: 

−ca 0 + 

1 

kε a 3 0 + 2 kε a 0 a 1 b 1 = 0 , 

3 



14 S.B. GaziKarakoc and K.K. Ali / Applied Mathematics and Computation 371 (2020) 124933 
2 d 2 ck 2 μb 1 + 

kε b 3 1 

3 

= 0 , 

kεa 0 b 
2 
1 = 0 , 

−cb 1 + 2 dck 2 μb 1 + kεa 2 0 b 1 + kεa 1 b 
2 
1 = 0 , 

−ca 1 + 2 dck 2 μa 1 + kεa 2 0 a 1 + kεa 2 1 b 1 = 0 , 

kεa 0 a 
2 
1 = 0 , 

2 ck 2 μa 1 + 

1 

3 

kεa 3 1 = 0 , 

Solving the above system, yields; 

Case 1. 

d = 

1 

2 k 2 μ
, b 1 = 0 , a 0 = 0 , a 1 = ∓ i 

√ 

6 

√ 

c 
√ 

k 
√ 

μ√ 

ε 
. 

Substituting into (35) and using (25) therefore, the solution of MEW equation is formed as: 

u 1 ( x, t ) = ∓ i 
√ 

6 

√ 

c 
√ 

k 
√ 

μ√ 

ε 

√ 

d tan 

(√ 

d ξ
)
, 

u 2 ( x, t ) = ± i 
√ 

6 

√ 

c 
√ 

k 
√ 

μ√ 

ε 

√ 

d cot 

(√ 

d ξ
)
, 

where ξ = k x − c t − x 0 . 

Case 2. 

a 0 = 0 , a 1 = ∓ i 
√ 

6 

√ 

c 
√ 

k 
√ 

μ√ 

ε 
, b 1 = ± i 

√ 

3 
2 

√ 

c 

4 k 3 / 2 
√ 

ε 
√ 

μ
, d = 

1 

8 k 2 μ
. 

Substituting into (35) and using (25) thus, the solution of MEW equation is formed as: 

u 3 ( x, t ) = ∓ i 
√ 

6 

√ 

c 
√ 

k 
√ 

μ√ 

ε 

√ 

d tan 

(√ 

d ξ
)

± i 
√ 

3 
2 

√ 

c 

4 k 3 / 2 
√ 

ε 
√ 

μ
√ 

d 
cot 

(√ 

d ξ
)
, 

u 4 ( x, t ) = ∓ i 
√ 

6 

√ 

c 
√ 

k 
√ 

μ√ 

ε 

√ 

d cot 

(√ 

d ξ
)

± i 
√ 

3 
2 

√ 

c 

4 k 3 / 2 
√ 

ε 
√ 

μ
√ 

d 
tan 

(√ 

d ξ
)
, 

where ξ = k x − c t − x 0 . 

Case 3. 

a 0 = 0 , a 1 = ∓ i 
√ 

6 

√ 

c 
√ 

k 
√ 

μ√ 

ε 
, b 1 = ± i 

√ 

3 
2 

√ 

c 

2 k 3 / 2 
√ 

ε 
√ 

μ
, d = − 1 

4 k 2 μ
. 

Substituting into (35) and using (25) so, the solution of MEW equation is formed as: 

u 5 ( x, t ) = ± i 
√ 

6 

√ 

c 
√ 

k 
√ 

μ√ 

ε 

√ 

−d tanh 

(√ 

−d ξ
)

∓ i 
√ 

3 
2 

√ 

c 

2 k 3 / 2 
√ 

ε 
√ 

μ
√ −d 

cot h 

(√ 

−d ξ
)
, 

u 6 ( x, t ) = ± i 
√ 

6 

√ 

c 
√ 

k 
√ 

μ√ 

ε 

√ 

−d cot h 

(√ 

−d ξ
)

∓ i 
√ 

3 
2 

√ 

c 

2 k 3 / 2 
√ 

ε 
√ 

μ
√ −d 

tan h 

(√ 

−d ξ
)
, 

where ξ = k x − c t − x 0 . 

Case 4. 

a 1 = 0 , a 0 = 0 , b 1 = ∓ i 
√ 

3 
2 

√ 

c 

k 3 / 2 
√ 

ε 
√ 

μ
, d = 

1 

2 k 2 ı 
. 
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Substituting into (35) and using (25) hence, the solution of MEW equation is formed as: 

u 7 ( x, t ) = ∓ i 
√ 

3 
2 

√ 

c 

k 3 / 2 
√ 

ε 
√ 

μ
√ 

d 
cot 

(√ 

d ξ
)
, 

u 8 ( x, t ) = ± i 
√ 

3 
2 

√ 

c 

k 3 / 2 
√ 

ε 
√ 

μ
√ 

d 
tan 

(√ 

d ξ
)
, 

where ξ = k x − c t − x 0 . 

6.3. The exact solution of GEW (at (p = 3) ) equation 

If we put p = 3 into Eq. (31) we get: 

−c f + 

1 

4 

εk f 4 + μck 2 f ′′ = 0 . (36)

Balancing f ′′ and f 4 in (36) results N + 2 = 4 N, and so N = 

2 
3 but we know that N must be positive integer number, so we

choose the transformation function f ( ξ ) = g 1 / 3 ( ξ ) and substituting into (36) , we get 

−cg 2 + 

1 

4 

εkg 3 + μk 2 c 

(
1 

3 

gg ′′ −2 

9 

g ′ 2 
)

= 0 . (37)

Now, we make balancing gg ′′ and g 4 in (37) results N + N + 2 = 3 N, and so N = 2 . This offers a truncated series as the

following form 

g ( ξ ) = a 0 + a 1 φ( ξ ) + b 1 φ
−1 ( ξ ) + a 2 φ

2 ( ξ ) + b 2 φ
−2 ( ξ ) . (38)

By substituting (38) and its derivatives into (37) and equating the coefficient of each power of φ( ξ ) to zero. We derive a

system of algebraic equations as follows: 

−ca 2 0 + 

1 

4 

kεa 3 0 −
2 

9 

cd 2 k 2 μa 2 1 + 

2 

3 

cd 2 k 2 μa 0 a 2 − 2 ca 1 b 1 + 

20 

9 

cdk 2 μa 1 b 1 + 

3 

2 

kεa 0 a 1 b 1 − 2 

9 

ck 2 μb 2 1 + 

3 

4 

kεa 2 b 
2 
1 

+ 

2 

3 

ck 2 μa 0 b 2 + 

3 

4 

kεa 2 1 b 2 − 2 ca 2 b 2 + 

80 

9 

cdk 2 μa 2 b 2 + 

3 

2 

kεa 0 a 2 b 2 = 0 , 

10 cd 2 k 2 μb 2 2 

9 

+ 

kεb 3 2 

4 

= 0 , 

16 cd 2 k 2 μb 1 b 2 
9 

+ 

3 kεb 1 b 
2 
2 

4 

= 0 , 

4 cd 2 k 2 μb 2 1 

9 

+ 2 cd 2 k 2 μa 0 b 2 + 

3 kεb 2 1 b 2 

4 

− cb 2 2 + 

8 cdk 2 μb 2 2 

9 

+ 

3 kεa 0 b 
2 
2 

4 

= 0 , 

2 cd 2 k 2 μa 0 b 1 
3 

+ 

kεb 3 1 

4 

+ 

26 cd 2 k 2 μa 1 b 2 
9 

− 2 cb 1 b 2 + 

14 cdk 2 μb 1 b 2 
9 

+ 

3 kεa 0 b 1 b 2 
2 

+ 

3 kεa 1 b 
2 
2 

4 

= 0 , 

10 cd 2 k 2 μa 1 b 1 
9 

− cb 2 1 + 

2 cdk 2 μb 2 1 

9 

+ 

3 kεa 0 b 
2 
1 

4 

− 2 ca 0 b 2 + 

8 cdk 2 μa 0 b 2 
3 

+ 

3 kεa 2 0 b 2 

4 

+ 

40 cd 2 k 2 μa 2 b 2 
9 

+ 

3 kεa 1 b 1 b 2 
2 

− 2 ck 2 μb 2 2 

9 

+ 

3 kεa 2 b 
2 
2 

4 

= 0 , 

−2 ca 0 b 1 + 

2 cdk 2 μa 0 b 1 
3 

+ 

3 kεa 2 0 b 1 

4 

+ 

20 cd 2 k 2 μa 2 b 1 
9 

+ 

3 kεa 1 b 
2 
1 

4 

− 2 ca 1 b 2 + 

46 cdk 2 μa 1 b 2 
9 

+ 

3 kεa 0 a 1 b 2 
2 

− 2 ck 2 μb 1 b 2 
9 

+ 

3 kεa 2 b 1 b 2 
2 

= 0 , 

−2 ca 0 a 1 + 

2 

3 

cdk 2 μa 0 a 1 + 

3 

4 

kεa 2 0 a 1 −
2 

9 

cd 2 k 2 μa 1 a 2 + 

3 

4 

kεa 2 1 b 1 − 2 ca 2 b 1 

+ 

46 

9 

cdk 2 μa 2 b 1 + 

3 

2 

kεa 0 a 2 b 1 + 

20 

9 

ck 2 μa 1 b 2 + 

3 

2 

kεa 1 a 2 b 2 = 0 , 
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−ca 2 1 + 

2 

9 

cdk 2 μa 2 1 + 

3 

4 

kεa 0 a 
2 
1 − 2 ca 0 a 2 + 

8 

3 

cdk 2 μa 0 a 2 + 

3 

4 

kεa 2 0 a 2 

− 2 

9 

cd 2 k 2 μa 2 2 + 

10 

9 

ck 2 μa 1 b 1 + 

3 

2 

kεa 1 a 2 b 1 + 

40 

9 

ck 2 μa 2 b 2 + 

3 

4 

kεa 2 2 b 2 = 0 , 

2 

3 

ck 2 μa 0 a 1 + 

1 

4 

kεa 3 1 − 2 ca 1 a 2 + 

14 

9 

cdk 2 μa 1 a 2 + 

3 

2 

kεa 0 a 1 a 2 + 

26 

9 

ck 2 μa 2 b 1 + 

3 

4 

kεa 2 2 b 1 = 0 , 

4 

9 

ck 2 μa 2 1 + 2 ck 2 μa 0 a 2 + 

3 

4 

kεa 2 1 a 2 − ca 2 2 + 

8 

9 

cdk 2 μa 2 2 + 

3 

4 

kεa 0 a 
2 
2 = 0 , 

16 

9 

ck 2 μa 1 a 2 + 

3 

4 

kεa 1 a 
2 
2 = 0 , 

10 

9 

ck 2 μa 2 2 + 

1 

4 

kεa 3 2 = 0 . 

Solving the above system, yields; 

Case 1. 

a 0 = 

5 c 

kε 
, b 2 = − 45 c 

32 k 3 εμ
, a 2 = −40 ckμ

9 ε 
, b 1 = 0 , a 1 = 0 , d = − 9 

16 k 2 μ
. 

Substituting into (38) , we get the solution of (37) . 

Since f ( ξ ) = g 1 / 3 ( ξ ) and using (25) therefore, the solution of GEW equation is formed as: 

u 1 ( x, t ) = 

(
5 c 

kε 
+ 

40 ckμd 

9 ε 
tanh 

2 
(√ 

−d ξ
)

+ 

45 c 

32 k 3 εμd 
cot h 

2 
(√ 

−d ξ
))1 / 3 

, 

u 2 ( x, t ) = 

(
5 c 

kε 
+ 

40 ckμd 

9 ε 
cot h 

2 
(√ 

−d ξ
)

+ 

45 c 

32 k 3 εμd 
tan h 

2 
(√ 

−d ξ
))1 / 3 

, 

where ξ = k x − c t − x 0 . 

Case 2. 

a 0 = 

10 c 

kε 
, b 2 = 0 , a 2 = −40 ckμ

9 ε 
, b 1 = 0 , a 1 = 0 , d = − 9 

4 k 2 μ
. 

Substituting into (38) , we obtain the solution of (37) . 

Since f ( ξ ) = g 1 / 3 ( ξ ) and using (25) thus, the solution of GEW equation is formed as: 

u 3 ( x, t ) = 

(
10 c 

kε 
+ 

40 ckμd 

9 ε 
tanh 

2 
(√ 

−d ξ
))1 / 3 

, 

u 4 ( x, t ) = 

(
10 c 

kε 
+ 

40 ckμd 

9 ε 
cot h 

2 
(√ 

−d ξ
))1 / 3 

, 

where ξ = k x − c t − x 0 . 

Case 3. 

a 0 = 

10 c 

kε 
, b 2 = − 45 c 

2 k 3 εμ
, a 2 = 0 , b 1 = 0 , a 1 = 0 , d = − 9 

4 k 2 μ
. 

Substituting into (38) , we get the solution of (37) . 

Since f ( ξ ) = g 1 / 3 ( ξ ) and using (25) then, the solution of GEW equation is formed as: 

u 1 ( x, t ) = 

(
10 c 

kε 
+ 

45 c 

2 k 3 εμd 
coth 

2 
(√ 

−d ξ
))1 / 3 

, 

u 2 ( x, t ) = 

(
10 c 

kε 
+ 

45 c 

2 k 3 εμd 
tan h 

2 
(√ 

−d ξ
))1 / 3 

, 

where ξ = k x − c t − x 0 . 

6.4. Some graphical illustrations 

We depict in this section some graphical illustrations of the obtained solutions for the GEW equation. To reveal the clear

picture of the obtained solutions, both the two and three dimensional plots for the solutions are given. 
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7. Conclusion 

In this work, GEW equation is extensively examined by employing two reliable methods. The first method is the pow-

erful Petrov-Galerkin finite element method that gives soliton solutions while the second method is the modified extended

tanh function method with the Riccati differential equation and yields different trigonometric and hyperbolic function solu-

tions, respectively. The modified extended tanh function method is used to find new exact traveling wave solutions of the

equation. The method has an advantage of being direct and concise enormous variety of solutions are obtained with the

aid of Mathematica software. We experimented our algorithm along with single solitary wave in which the exact solution

is known. Stability analysis have been done and the linearized numerical scheme have been obtained unconditionally sta-

ble. The accuracy of the method is investigated both L 2 and L ∞ 

error norms and the invariant quantities I 1 , I 2 and I 3 . The

obtained numerical results indicate that the error norms are satisfactorily small and the conservation laws are marginally

constant in all computer program run. We can see that our numerical scheme for the equation is more accurate than the

other earlier schemes found in the literature. Therefore, our numerical and exact techniques are suitable for getting numer-

ical solutions of partial differential equations. 
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